已知拋物線C1:x2=4py,圓C2:x2+(y-p)2=p2,直線l:y=
1
2
x+p,其中p>0,直線l與C1,C2的四個交點按橫坐標從小到大依次為A,B,C,D,則
AB
CD
的值為( 。
A、
p2
4
B、
p2
3
C、
p2
2
D、p2
考點:平面向量數(shù)量積的運算,直線與圓的位置關系
專題:平面向量及應用
分析:由題意可得拋物線的焦點C2(0,p),求得|AB|=|AC2|-|BC2|=yA,同理求得|CD|=yD,再根據(jù)
AB
CD
=|AB|•|CD|,利用韋達定理計算求得結果.
解答: 解:由題意可得拋物線的焦點C2(0,p),|AB|=|AC2|-|BC2|=yA+p-p=yA
同理求得|CD|=yD,∴
AB
CD
=|AB|•|CD|=yA•yD,
而由
x2=4py
y=
1
2
x+p
,可得 y2-3py+p2=0,∴yA•yD=p2,
故選:D.
點評:本題考查圓錐曲線的性質和應用,解題時要認真審題,注意公式的合理運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=asinωx+bcosωx(a,b,ω∈R)滿足“對任意的x∈R,總有f(x)≥f(
π
6
),且點(
π
3
,0)為函數(shù)f(x)的對稱中心”.若函數(shù)f(x)的周期為T,則以下結論一定成立的是(  )
A、a=0
B、b=0
C、T=
3
D、ω=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=3,an+2=3an+1-2an
(Ⅰ)證明數(shù)列{ an+1-an}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2(an+1),{bn}的前n項和為Sn,求證
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如下表:那么方程x3+x2-2x-2=0的一個近似根(精確度0.04)為( 。
f(1)=-2f(1.5)=0.625
f(1.25)=-0.984f(1,375)=-0.260
f(1.4375)=0.165f(1.40625)=-0.052
A、1.5B、1.25
C、1.375D、1.4375

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(Ⅰ)當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
9
+
y2
b
=1(b>0)的焦距為2,則實數(shù)b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓 
x2
4
+y2=1的左、右焦點,B(0,-1).
(Ⅰ)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(Ⅱ)若C為橢圓上異于B一點,且
BF1
CF1
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文做)函數(shù)f(x)=
x
的圖象與g(x)=cosx的圖象在[0,+∞)內( 。
A、沒有交點
B、有且僅有一個交點
C、尤其僅有兩個交點
D、有無窮多個交點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x=1與圓x2+y2-2y=0的位置關系是
 

查看答案和解析>>

同步練習冊答案