5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=$\frac{1}{2}$,an=-2SnSn-1(n≥2),則S200=$\frac{1}{400}$.

分析 an=-2SnSn-1化簡(jiǎn)可得$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,且$\frac{1}{{S}_{1}}$=2,從而可判斷數(shù)列{$\frac{1}{{S}_{n}}$}是以2為首項(xiàng),2為公差的等差數(shù)列,從而求得.

解答 解:∵an=-2SnSn-1
∴Sn-Sn-1=-2SnSn-1,
∴$\frac{1}{{S}_{n-1}}$-$\frac{1}{{S}_{n}}$=-2,
即$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,且$\frac{1}{{S}_{1}}$=2,
故數(shù)列{$\frac{1}{{S}_{n}}$}是以2為首項(xiàng),2為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,
故Sn=$\frac{1}{2n}$,
故S200=$\frac{1}{400}$,
故答案為:$\frac{1}{400}$.

點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了整體思想與轉(zhuǎn)化思想的應(yīng)用及構(gòu)造法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用力F推動(dòng)一物體運(yùn)動(dòng)S米,設(shè)F與水平面的夾角為θ,則它所做的功是FScosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC的外心為O,且2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則cos∠BAC的值是$±\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1-6an,則使該數(shù)列的n項(xiàng)和Sn不小于2016的最小自然數(shù)n等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△BCD與△MCD都是正三角形,平面MCD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥平面ABM;
(Ⅱ)若∠ACB=60°,求三棱錐A-BCD與三棱錐M-ACD的體積比;
(Ⅲ)若AB=2$\sqrt{3}$,CD=2,求直線DM與平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“m>2”是“函數(shù)f(x)=m+log2x(x≥$\frac{1}{2}$)不存在零點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C的圓心在射線y=x一4(y≥0)上,在x軸上截得的弦長(zhǎng)為4,且過點(diǎn)(2,0).求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≥4}\\{f(x+1)\;\;,x<4}\end{array}}$,則f(2+log23)的值為( 。
A.24B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若點(diǎn)P(3,4)是線段AB的中點(diǎn),且點(diǎn)A的坐標(biāo)為(-1,2),則點(diǎn)B的坐標(biāo)為(7,6).

查看答案和解析>>

同步練習(xí)冊(cè)答案