【題目】已知橢圓C: (a>b>0)左、右焦點分別為F1 , F2 , A(2,0)是橢圓的右頂點,過F2且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點M,N(M,N不同于點A),若 =0, = ;
①求證:直線l過定點;并求出定點坐標;
②求直線AT的斜率的取值范圍.
【答案】
(1)
解:由題意可知:a=2,
令x=c,代入橢圓方程,解得:y= ,則丨PQ丨= =3,
則b= ,
∴橢圓的標準方程為:
(2)
解:①當直線MN斜率不存在時,設lMN:x=m,
則 ,解得:y= ,則丨MN丨=2 ,
設直線MN與x軸交于點B,丨丨MB=丨AM丨即 =2﹣m,
∴m= 或m=2(舍),
∴直線lMN過定點( ,0);
當直線MN斜率存在時,設直線MN斜率為k,
設M(x1,y1),N(x2,y2),則直線MN:y=kx+b,
與橢圓方程 ,聯(lián)立,消取y整理得(4k2+3)x2+8kbx+4k2﹣12=0,
∴x1+x2=﹣ ,x1x2= ,
△>0,k∈R,
=0,(x1﹣2,y1)(x2﹣2,y2)=0,
即x1x2﹣2(x1+x2)+4+y1y2=0,
y1y2=(kx1+b)(kx2+b)=k2x1x2+kb(x1+x2)+b2= ,
∴7b2+4k2+16kb=0,則b=﹣ k,或b=﹣2k,
∴l(xiāng)MN:y=k(x﹣ )或y=k(x﹣2),
∴直線lMN過定點( ,0)或(2,0);
綜合知,直線過定點( ,0);
②T為MN中點,T( , ),則T(﹣ , ),
∴kAT= = ,
由b=﹣ ,則kAT= ,
當k=0時,kAT=0,
當k≠0時,k∈R,kAT= = ,
由8k+ ≥2 =2 ,
或8k+ ≤﹣2 =﹣2 ,
∴kAT∈[﹣ , ],
直線AT的斜率的取值范圍為[﹣ , ]
【解析】(1)由a=2,則橢圓的通徑丨PQ丨= ,代入即可求得b的值,即可取得橢圓的方程;(2)當直線MN斜率不存在時,將x=m代入橢圓方程,則 =2﹣m,即可求得m的值,即可求得直線恒過定點;當斜率存在,設直線方程y=kx+b,代入橢圓方程,由韋達定理,向量的坐標運算,即可求得b=﹣ k,或b=﹣2k,即可求得直線方程,則直線過定點( ,0);(3)利用中點坐標公式求得T坐標,利用直線的斜率公式,kAT= = ,分類當k=0,kAT=0,當k≠0時,利用基本不等式的性質,即可求得直線AT的斜率的取值范圍.
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】某幼兒園為訓練孩子的數(shù)字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機變量X的分布列及數(shù)學期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點中相鄰兩個交點的距離是,當時取得最小值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間的最大值和最小值;
(3)若函數(shù)的零點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長為a,M,N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關系為( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的各項均為正數(shù),且bn是 與 的等比中項,求bn的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中, , 為線段(含端點)上一個動點,設對于函數(shù),給出以下三個結論:
①當時,函數(shù)的值域為;
②對于任意的,均有;
③對于任意的,函數(shù)的最大值均為4.
其中所有正確的結論序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com