分析 (I)由$a_n^2+2{a_n}=4{S_n}+3$,當n=1時,得$a_1^2+2{a_1}=4{a_1}+3$,解出即可得出.
(Ⅱ) 由$a_n^2+2{a_n}=4{S_n}+3$,可知$a_{n+1}^2+2{a_{n+1}}=4{S_{n+1}}+3$.相減化為及其an>0可得an+1-an=2.利用等差數列的通項公式即可得出.
(III)由an=2n+1,${b_n}=\frac{1}{{{a_n}{a_{+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂項求和”方法即可得出.
解答 解:(I)由$a_n^2+2{a_n}=4{S_n}+3$,
當n=1時,得$a_1^2+2{a_1}=4{a_1}+3$,
解得a1=-1,a1=3.
由an>0,∴a1=3.
(Ⅱ) 由$a_n^2+2{a_n}=4{S_n}+3$①
可知$a_{n+1}^2+2{a_{n+1}}=4{S_{n+1}}+3$.②
由②-①可得$a_{n+1}^2-a_n^2+2({a_{n+1}}-{a_n})=4({S_{n+1}}-{S_n})=4{a_{n+1}}$,
即$2({a_{n+1}}+{a_n})=a_{n+1}^2-a_n^2=({a_{n+1}}+a)({a_{n+1}}-a)$,
由于an>0可得an+1-an=2.
又a1=3.∴數列{an}是首項為3,公差為2的等差數列,
∴數列{an}通項公式為an=2n+1.
(III)由an=2n+1,${b_n}=\frac{1}{{{a_n}{a_{+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.\
設數列{bn}的前n項和為Tn,則Tn=b1+b2+…+bn=$\frac{1}{2}[{(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n+1})-(\frac{1}{2n+3})}]=\frac{n}{3(2n+3)}$.
點評 本題考查了數列遞推關系、等差數列的定義與通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com