16.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+lg(3x+1)的定義域為( 。
A.[-$\frac{1}{3}$,1)B.(-$\frac{1}{3}$,1)C.(-$\frac{1}{3}$,+∞)D.(-∞,1)

分析 根據二次根式的性質以及對數(shù)函數(shù)的性質求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{1-x>0}\\{3x+1>0}\end{array}\right.$,
解得:-$\frac{1}{3}$<x<1,
故函數(shù)的定義域是(-$\frac{1}{3}$,1),
故選:B.

點評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)以及二次根式的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x-y)=f(x)-f(y),當x>0時,f(x)>0.
(1)求證:f(0)=0,且f(x)是奇函數(shù);
(2)求證:y=f(x),x∈R是增函數(shù);
(3)設f(1)=2,求f(x)在x∈[-5,5]時的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證:
(1)AP∥平面BDM;
(2)AP∥GH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-ax-2a2(x∈R).
(Ⅰ)關于x的不等式f(x)<0的解集為A,且A?[-1,2],求a的取值范圍;
(Ⅱ)是否存在實數(shù)a,使得當x∈R時,$\left\{\begin{array}{l}f(|x|)-f(x)=0\\|f(x)|-f(x)=0\end{array}\right.$成立.若存在給出證明,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{m}{x}$的圖象過點P(1,5).
(Ⅰ)求實數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(Ⅱ)利用單調性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(Ⅰ)(0.064)${\;}^{{-}^{\frac{1}{3}}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+(16)-0.75
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知集合A=[2-a,2+a],B=[0,5],若“x∈A”是“x∈B”的充分不必要條件,則實數(shù)a的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調遞減的函數(shù)是( 。
A.$y={x^{\frac{2}{3}}}$B.$y={x^{-\frac{1}{3}}}$C.$y={x^{\frac{3}{2}}}$D.$y={x^{-\frac{2}{3}}}$

查看答案和解析>>

同步練習冊答案