某校高一開設4門選修課,有4名同學,每人只選一門,恰有2門課程沒有同學選修,共有
 
種不同選課方案(用數(shù)字作答).
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:先從4門課中任選2門,每一門為一步,第一門有4為同學可以選,第二門有3位同學可選,根據(jù)分步計數(shù)原理可得答案.
解答: 解:恰有2門選修課沒有被這4名學生選擇,先從4門課中任選2門,為
C
2
4
=6種,四個學生選這兩種課共有24=16中,排除四個人全選其中一門課程為16-2=14種,故有14
C
2
4
=84種.
故答案為:84.
點評:本題考查了分步計數(shù)原理,關(guān)鍵是如何分步,屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列四個命題中
①“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
②“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)=a-7相互平行”的充要條件;
③函數(shù)y=
x2+4
x2+3
的最小值為
2

其中假命題的為
 
(將你認為是假命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B是x軸上的兩點,點P的橫坐標為1,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是(  )
A、x+y-5=0
B、2x-y-1=0
C、x+y-3=0
D、2x+y-7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+cosx)-1.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若將函數(shù)f(x)的圖象向右平移φ個單位,所的圖象關(guān)于y軸對稱,求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行右邊的程序圖,則輸出所有數(shù)的和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校在暑假組織社會實踐活動,將8名高一年級學生,平均分配甲、乙兩家公司,其中兩名英語成績優(yōu)秀學生不能分給同一個公司;另三名電腦特長學生也不能分給同一個公司,則不同的分配方案有(  )
A、36種B、38種
C、108種D、114種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=
1
5
x+b與y=ax+3互為反函數(shù),則a+b為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知z=a+bi(a,b∈R,i是虛數(shù)單位),z1,z2∈C,定義:D(z)=ⅡzⅡ=|a|+|b|,D(z1,z2)=Ⅱz1-z2Ⅱ.給出下列命題:
(1)對任意z∈C,都有D(z)>0;
(2)若
.
z
是復數(shù)z的共軛復數(shù),則D(
.
z
)=D(z)恒成立;
(3)若D(z1)=D(z2)(z1,z2∈C),則z1=z2
(4)(理科)對任意z1,z2,z3∈C,結(jié)論D(z1,z3)≤D(z1,z2)+D(z2,z3)恒成立.
其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n∈R,i是虛數(shù)單位,若m-5i=3+ni,則(m+ni)2=(  )
A、16-30i
B、-16-30i
C、30-16i
D、-30+16i

查看答案和解析>>

同步練習冊答案