6.已知二階矩陣$M=[{\begin{array}{l}a&1\\ 1&b\end{array}}]$屬于特征值λ=5的一個特征向量為$\overrightarrow{e}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,則a+b=8.

分析 由矩陣的特征向量的定理,列方程組求的a和b的值,即可求得a+b的值.

解答 解:由特征向量的定義可知:$\left\{\begin{array}{l}{(5-a)×1-1=0}\\{-1+(5-b)×1=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=4}\\{b=4}\end{array}\right.$,
∴a+b=8,
故答案為:8.

點評 本題考查特征向量的意義,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知二階矩陣A=$[{\begin{array}{l}3&5\\ 0&{-2}\end{array}}]$.
(1)求矩陣A的特征值和特征向量;
(2)設(shè)向量$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,求A2016$\overrightarrow{β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)f(x)=6-12x+x3的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在極坐標(biāo)中,已知圓C經(jīng)過點P(2$\sqrt{2}}$,$\frac{π}{4}$),圓心為直線ρsin(θ-$\frac{π}{3}}$)=-$\sqrt{3}$與極軸的交點,圓C的極坐標(biāo)方程是ρ=4cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(x-$\frac{π}{3}$)+2sin2$\frac{x}{2}$,x∈R.
(1)求函數(shù)f(x)的值域;
(2)記△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若f(B)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=|-x2+4|,若方程f(x)-2a=1恰有兩個實數(shù)根,則a的取值范圍是{a|a>$\frac{3}{2}$或a=-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.經(jīng)過點A(3,0)、垂直于極軸的直線的極坐標(biāo)方程是ρcosθ=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列{an}滿足a1=1,an-an-1=$\frac{1}{{2}^{n-1}}$(n∈N*),則an=2-$(\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)y=Asin(ωx+φ)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個最大值和一個最小值,且當(dāng)x=π時,y有最大值3,當(dāng)x=6π時,y有最小值-3.
(1)求此函數(shù)解析式;
(2)寫出該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案