已知點P在拋物線y2=4x上運動,F(xiàn)為拋物線的焦點,點M的坐標為(3,2),當PM+PF取最小值時點P的坐標為
 
分析:設點P在準線上的射影為D,由拋物線的定義把問題轉化為求PM+PD的最小值,同時可推斷出當D,P,M三點共線時PM+PD最小,答案可得.
解答:解:設點P在準線上的射影為D,由拋物線的定義可知PF=PD,
∴要求PM+PF的最小值,即求PM+PD的最小值,
只有當D,P,M三點共線時PM+PD最小,
且最小值為3-(-1)=4
令y=2,可得x=1,
∴當PM+PF取最小值時點P的坐標為(1,2).
故答案為:(1,2).
點評:本題考查了拋物線的定義與標準方程、平面幾何中求距離和的最小值等知識,正確運用拋物線的定義是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為( 。
A、(
1
4
,-1)
B、(
1
4
,1)
C、(1,2)
D、(1,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,則點P到直線l1:4x-3y+6=0的距離和到直線l2:x=-1的距離之和的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和的最小值為
5
4
5
4

查看答案和解析>>

同步練習冊答案