已知函數(shù)f(x)=2cosx(sinx-cosx)+1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間上的最小值和最大值.
【答案】分析:(I)先利用二倍角公式和兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理,然后利用正弦函數(shù)的性質(zhì)求得函數(shù)的最小正周期.
(II)根據(jù)正弦函數(shù)的單調(diào)性和x的范圍,進(jìn)而求得函數(shù)的最大和最小值.
解答:解:(I)f(x)=2cosx(sinx-cosx)+1=sin2x-cos2x=
因此,函數(shù)f(x)的最小正周期為π.
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213935624141478/SYS201310232139356241414016_DA/1.png">在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),

故函數(shù)f(x)在區(qū)間上的最大值為,最小值為-1.
點(diǎn)評(píng):本小題考查三角函數(shù)中的誘導(dǎo)公式、特殊角三角函數(shù)值、兩角差公式、倍角公式、函數(shù)y=Asin(ωx+ϕ)的性質(zhì)等基礎(chǔ)知識(shí),考查基本運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案