已知圓的方程是(x-1)2+(y-1)2=1,則過點(diǎn)A(2,4)與圓相切的直線方程是
 
分析:通過觀察得出一條切線方程,設(shè)出另一條切線方程,利用圓心到直線的距離等于半徑,求出切線的斜率,從而求出切線方程即可.
解答:解:過點(diǎn)A(2,4)與圓(x-1)2+(y-1)2=1的相切的直線方程,其中一條是:x=2
設(shè)所求的直線方程為:y-4=k(x-2)
即為:kx-y+4-2k=0
圓心坐標(biāo)為(1,1),圓心到直線的距離=半徑=1
|k-1+4-2k|
k2+1
=1

|3-k|2=k2+1
k=
4
3

y-4=
4
3
(x-2)
即:4x-3y+4=0
綜上所述,所求的直線方程為:
x=2或4x-3y+4=0
故答案為:x=2或4x-3y+4=0
點(diǎn)評(píng):本題是基礎(chǔ)題,考查直線和圓的位置關(guān)系,直線與圓相切的判斷方法,以及切線方程的求法,注意圓外點(diǎn)的切線的求法,容易疏忽垂直坐標(biāo)軸的切線方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(1,2)滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足(  )
A.是圓心B.在圓上C.在圓內(nèi)D.在圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省雅安中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知圓的方程是(x-1)2+(y-1)2=1,則過點(diǎn)A(2,4)與圓相切的直線方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案