【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+12f(an-1)+1,且a1=3,an>1.

(1)設bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;

(2)設cn=nbn,求數(shù)列{cn}的前n項和Sn.

【答案】見解析

【解析】

(1)證明:∵函數(shù)f(x)=x2+bx為偶函數(shù),

∴b=0,

∴f(x)=x2,

∴an+1=2(an-1)2+1,

∴an+1-1=2(an-1)2,

=2.

∵a1=3,

∴b1=log22=1,

∴bn+1=2n.

即bn=2n-1,

∴數(shù)列{bn+1}是以2為首項,以2為公比的等比數(shù)列.

(2)解:由題意得cn=n2n-n.

設An=1×2+2×22+3×23+…+n×2n,

設Bn=1+2+3+4+…+n=,

∴2An=1×22+2×23+3×24+…+n×2n+1.

∴-An=2+22+23+…+2n-n×2n+1-n×2n+1=2n+1-n×2n+1-2,

∴An=(n-1)2n+1+2.

∴Sn=An-Bn=(n-1)2n+1+2-.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),將的圖象向左平移個單位長度后得到的圖象,且在區(qū)間內的最大值為.

(1)求實數(shù)的值;

(2)在中,內角, , 的對邊分別是, ,若,且,求的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)接到生產3000臺某產品的A,B,C三種部件的訂單,每臺產品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產這三種部件,生產B部件的人數(shù)與生產A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).

(1)設生產A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產需要的時間;

(2)假設這三種部件的生產同時開工,試確定正整數(shù)k的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一鮮花店一個月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計如下:

日銷售量(枝)

0~49

50~99

100~149

150~199

200~250

銷售天數(shù)(天)

3天

3天

15天

6天

3天

將日銷售量落入各組區(qū)間的頻率視為概率.

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,.

(1)證明:數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項和為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

①分類變量的隨機變量越大,說明“有關系”的可信度越大.

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則的值分別是和0.3.

③根據(jù)具有線性相關關系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,

.正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓

(1)若過點的圓的切線只有一條,求的值及切線方程;

(2)若過點且在兩坐標軸上截距相等的直線與圓相切,求的值及切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長均相等的正三棱柱ABCA1B1C1中,D為BB1的中點,F(xiàn)在AC1上,且DF⊥AC1,則下述結論:

①AC1⊥BC;

②AF=FC1;

③平面DAC1⊥平面ACC1A1,其中正確的個數(shù)為( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形,,且

(1)求證: 平面平面;

(2)是棱的中點,求證:平面;

(3)求四棱錐的體積

查看答案和解析>>

同步練習冊答案