設(shè)f(x)=x2+bx+c,且f(-1)=f(3),則 ( )
A.f(1)>c>f(-1) B.f(1)<c<f(-1)
C.f(1)>f(-1)>c D.f(1)<f(-1)<c
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山西省康杰中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試題 題型:013
設(shè)f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),則實(shí)數(shù)t的取值范圍是
A.(-1,2)
B.(-3,3)
C.(2,3)
D.(-1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省南昌二中2012屆高三第三次月考數(shù)學(xué)理科試題 題型:013
設(shè)f(x)=x2+bx+c(x∈R),且滿足,對任意正數(shù)a,下面不等式恒成立的是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(山東卷) 題型:044
已知函數(shù)f(x)=lnx-ax--1(a∈R).
(Ⅰ)當(dāng)a≤時(shí),討論f(x)的單調(diào)性;
(Ⅱ)設(shè)f(x)=x2-2bx+4,當(dāng)a=時(shí),若對任意存在使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修三1.1算法與程序框圖練習(xí)卷(一)(解析版) 題型:選擇題
對于解方程x2-2x-3=0的下列步驟:
①設(shè)f(x)=x2-2x-3
②計(jì)算方程的判別式Δ=22+4×3=16>0
③作f(x)的圖象
④將a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作為解方程的算法的有效步驟為( )
A.①② B.②③
C.②④ D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com