已知橢圓E的方程為:的右焦點(diǎn)坐標(biāo)為(1,0),點(diǎn)在橢圓E上。

   (I)求橢圓E的方程;

   (II)過(guò)橢圓E的頂點(diǎn)A作兩條互相垂直的直線分別與橢圓E交于(不同于點(diǎn)A的)兩點(diǎn)M,N。

        問(wèn):直線MN是否一定經(jīng)過(guò)x軸上一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),不是,說(shuō)明理由。

 


則得即直線的方程為

,此時(shí)過(guò)軸上一點(diǎn)-----------------------------------10分

當(dāng)時(shí),假設(shè)直線過(guò)軸上一定點(diǎn) ,則有則由

解得

所以直線過(guò)軸上一定點(diǎn) -----------------------12分

(法二):①若直線垂直于軸,則由直線的方程為和橢圓的方程聯(lián)立易解得點(diǎn)的橫坐標(biāo)為,此時(shí)直線經(jīng)過(guò)軸上的一點(diǎn);

②當(dāng)直線不垂直于軸時(shí),設(shè)直線的方程為:

則由--------------6分

設(shè),則有,

------------------------8分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,長(zhǎng)軸是短軸的2倍,且橢圓E過(guò)點(diǎn)(
2
,
2
2
)
;斜率為k(k>0)的直線l過(guò)點(diǎn)A(0,2),
n
為直線l的一個(gè)法向量,坐標(biāo)平面上的點(diǎn)B滿足條件|
n
AB
|=|
n
|

(1)寫(xiě)出橢圓E方程,并求點(diǎn)B到直線l的距離;
(2)若橢圓E上恰好存在3個(gè)這樣的點(diǎn)B,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的方程為2x2+y2=2,過(guò)橢圓E的一個(gè)焦點(diǎn)的直線l交橢圓于A、B兩點(diǎn).
(1)求橢圓E的長(zhǎng)軸和短軸的長(zhǎng),離心率,焦點(diǎn)和頂點(diǎn)的坐標(biāo);
(2)求△ABO(O為原點(diǎn))的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓E的方程為:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)坐標(biāo)為(1,0),點(diǎn)P(1,
3
2
)在橢圓E上.
(I)求橢圓E的方程;
(II)過(guò)橢圓E的頂點(diǎn)A作兩條互相垂直的直線分別與橢圓E交于(不同于點(diǎn)A的)兩點(diǎn)M,N.
問(wèn):直線MN是否一定經(jīng)過(guò)x軸上一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓E的方程為
x2
a2
+
y2
b2
=1(a>b>0)雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1和l2,過(guò)橢圓E的右焦點(diǎn)F作直線l,使得l⊥l2于點(diǎn)C,又l與l1交于點(diǎn)P,l與橢圓E的兩個(gè)交點(diǎn)從上到下依次為A,B(如圖).
(1)當(dāng)直線l1的傾斜角為30°,雙曲線的焦距為8時(shí),求橢圓的方程;
(2)設(shè)
PA
=λ1
AF
,
PB
=λ2
BF
,證明:λ12為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)已知橢圓E的方程為
x2
4
+
y2
3
=1
,右焦點(diǎn)為F,直線l與圓x2+y2=3相切于點(diǎn)Q,且Q在y軸的右側(cè),設(shè)直線l交橢圓E于不同兩點(diǎn)A(x1,y1),B(x2,y2).
(1)若直線l的傾斜角為
π
4
,求直線l的方程;
(2)求證:|AF|+|AQ|=|BF|+|BQ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案