選做題(考生注意:請?jiān)冢ˋ)(B)兩題中,任選做一題作答,若多做,則按(A)題計(jì)分)
(A)(參數(shù)方程與極坐標(biāo)選講)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4
;
(B)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)
分析:(A)欲求△OAB的面積,根據(jù)極角可得三角形的內(nèi)角∠AOB,由極徑得邊OA,OB的長,根據(jù)三角形的面積公式即可求得.
(B)直接利用絕對值不等式的解法,求出不等式的解即可.
解答:解:(A)由極坐標(biāo)的意義得:
△OAB的面積:
1
2
OA×OB×sin∠AOB=
1
2
×1×3×sin
π
3
=
3
3
4

即:△OAB的面積:
3
3
4

故答案為:
3
3
4

解:(B)因?yàn)?|
x+1
x-1
|>
x+1
x-1
,所以
x+1
x-1
<0

解得x∈(-1,1);
故答案為:(-1,1).
點(diǎn)評:(A)本小題考查點(diǎn)的極坐標(biāo)的應(yīng)用,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別.
(B)本小題是基礎(chǔ)題,考查絕對值不等式的解法,分式不等式的解法,注意同解變形的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題(考生注意:請?jiān)冢?)(2)兩題中,任選做一題作答,若多做,則按(1)題計(jì)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線ρsin(θ+
π4
)=2
被圓ρ=4截得的弦長為
 

(2)(不等式選講選做題)若不等式|x-2|+|x+3|<a的解集為∅,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三適應(yīng)性考試?yán)砜茢?shù)學(xué) 題型:填空題

選做題(考生注意:請?jiān)贏,B兩題中,任選做一題作答,若多做,則按A題記分)

A.若集合,則實(shí)數(shù)的取值范圍是       ;

B.已知直線與圓相交于AB,則以AB為直徑的圓的面積為       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三適應(yīng)性考試?yán)砜茢?shù)學(xué) 題型:填空題

選做題(考生注意:請?jiān)贏,B兩題中,任選做一題作答,若多做,則按A題記分)

A.若集合,則實(shí)數(shù)的取值范圍是       ;

B.已知直線與圓相交于AB,則以AB為直徑的圓的面積為       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三12月月考數(shù)學(xué)理卷 題型:填空題

選做題(考生注意:請?jiān)贏, B兩題中,任選做一題作答,若多做,則按A題記分)

A.若集合,則實(shí)數(shù)的取值范圍是       ;

B.已知直線與圓相交于AB,則以AB為直徑的圓的面積為       .

 

查看答案和解析>>

同步練習(xí)冊答案