在直角坐標平面內,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=4cosθ,直線l的參數(shù)方程是
x=-3+
3
2
t
y=
1
2
t
(t為參數(shù)).
(1)求極點在直線l上的射影點P的極坐標;
(2)若M、N分別為曲線C、直線l上的動點,求|MN|的最小值.
(1)由直線的參數(shù)方程消去參數(shù)t得l:x-
3
y+3=0
,
則l的一個方向向量為
a
=(3,
3
)
,
P(-3+
3
2
t,
1
2
t)
,
OP
=(-3+
3
2
t,
1
2
t)
,
OP
a
,
3(-3+
3
2
t)+
3
2
t=0
,得:t=
3
2
3

t=
3
2
3
代入直線l的參數(shù)方程得P(-
3
4
,
3
4
3
)

化為極坐標為P(
3
2
,
2
3
π)

(2)ρ=4cosθ?ρ2=4ρcosθ,
由ρ2=x2+y2及x=ρcosθ得(x-2)2+y2=4,
設E(2,0),則E到直線l的距離d=
5
2
,
|MN|min=d-r=
1
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對應的線性變換作用下的像的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標平面內,以坐標原點O為極點x軸的非負半軸為極軸建立極坐標系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在直角坐標平面內,以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系,點D的極坐標是(1,
3
2
π)
,曲線C的極坐標方程為ρ=
2
1-cosθ

(I)求點D的直角坐標和曲線C的直角坐標方程;
(II)若經(jīng)過點D的直線l與曲線C交于A、B兩點,求|DA|•|DB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)選修4-4:坐標系與參數(shù)方程
在直角坐標平面內,以坐標原點O為極點,沿x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程是ρ=4cosθ,直線l的參數(shù)方程是
x=-3+
3
2
t
y=
1
2
t
(t為參數(shù)),M、N分別為曲線C、直線l上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點M的極坐標為(4
2
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).求點M到曲線C上的點的距離的最小值
5-
2
5-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步練習冊答案