6.已知f(x),g(x),都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)>f(x)g′(x),設(shè)a,b分別為連續(xù)兩次拋擲同一枚骰子所得點(diǎn)數(shù),若f(x)-axg(x)=0,$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$≥$\frac{10}{3}$,則關(guān)于x的方程abx2+8x+1=0有兩個(gè)不同實(shí)根的概率為(  )
A.$\frac{1}{2}$B.$\frac{5}{12}$C.$\frac{7}{18}$D.$\frac{13}{36}$

分析 先求出a的取值,結(jié)合關(guān)于x的方程abx2+8x+1=0有兩個(gè)不同實(shí)根,確定a,b 的可能情況,再結(jié)合基本事件總數(shù),即可求出概率.

解答 解:∵f(x)-axg(x)=0,
∴f(x)=axg(x)(a>0,a≠1),
∴ax=$\frac{f(x)}{g(x)}$.
∵f′(x)g(x)-f(x)g′(x)>0,
∴(ax)′=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$>0,
∴函數(shù)y=ax單調(diào)遞增,
∴a>1.
∵$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$≥$\frac{10}{3}$.
∴a+a-1≥$\frac{10}{3}$,a>1.
解得a≥3.
∴a=3,4,5,6,
∵關(guān)于x的方程abx2+8x+1=0有兩個(gè)不同實(shí)根,
∴△=64-4ab>0,
∴ab<16,
a=3時(shí),b=1,2,3,4,5;a=4時(shí),b=1,2,3;a=5時(shí),b=1,2,3;a=6時(shí),b=1,2;共13種情況
又a,b的取值有6×6=36種情況.
∴所求概率為$\frac{13}{36}$.
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查概率知識(shí),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.經(jīng)過(guò)拋物線y2=8x的焦點(diǎn)和頂點(diǎn)且與準(zhǔn)線相切的圓的半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量$\overrightarrow m=({sinA,sinB}),\overrightarrow n=({cosB,cosA}),\overrightarrow m•\overrightarrow n=sin2C$,且A,B,C分別為△ABC的三邊a,b,c所對(duì)的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差數(shù)列,且△ABC的面積為$9\sqrt{3}$,求c邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={-1,0,1,2,3},B={x|x=4n-1,n∈Z},則A∩B=( 。
A.{-1}B.{1}C.{3}D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給定命題p:y=tanx-1只有一個(gè)零點(diǎn),q:y=lg(x2+1)的值域[0,+∞),則以下為真命題的是( 。
A.pB.¬qC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,${S_n}={(-1)^n}•{a_n}+\frac{1}{2^n},n∈{N^*}$,則a3=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.sin215°+sin275°+sin15°sin75°=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.同一個(gè)平面上的兩個(gè)非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=\sqrt{3}|{\overrightarrow a-\overrightarrow b}|$,則向量$\overrightarrow a,\overrightarrow b$夾角的取值范圍為[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.下列各數(shù)a=3E(16)、b=210(6)、c=1000(4)、d=111011(2)中,由大到小的順序是b>c>a>d.

查看答案和解析>>

同步練習(xí)冊(cè)答案