10.已知A+B=$\frac{5}{4}$π,且A、B≠kπ+$\frac{π}{2}$(k∈Z).
(Ⅰ)求證:(1+tanA)(1+tanB)=2;
(Ⅱ)求tan$\frac{5}{8}$π的值.

分析 (Ⅰ)由條件利用兩角和差的正切公式,變形證得要證的等式.
(Ⅱ)取$A=B=\frac{5}{8}π$,由(Ⅰ)求得tan$\frac{5}{8}$π的值.

解答 證明:(Ⅰ)依題意,$tan(A+B)=tan\frac{5}{4}π=1$,即$\frac{tanA+tanB}{1-tanAtanB}=1$,故tanA+tanB=1-tanAtanB,
∴(1+tanA)(1+tanB)=1+tanA+tanB+tanAtanB=2成立.
(Ⅱ)取$A=B=\frac{5}{8}π$,由(Ⅰ)得${(1+tan\frac{5}{8}π)^2}=2$,∴$1+tan\frac{5}{8}π=±\sqrt{2}$.
∵$\frac{π}{2}<\frac{5}{8}π<π$,∴$tan\frac{5}{8}π=-\sqrt{2}-1$.

點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線(xiàn)C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點(diǎn)為A1,A2,拋物線(xiàn)E以坐標(biāo)原點(diǎn)為頂點(diǎn),以A2為焦點(diǎn).若雙曲線(xiàn)C的一條漸近線(xiàn)與拋物線(xiàn)E及其準(zhǔn)線(xiàn)分別交于點(diǎn)M,N,且$\overrightarrow{{A_1}N}=\overrightarrow{M{A_2}}$,∠MA1N=135°,則雙曲線(xiàn)C的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知X~B(n,0.5),且E(X)=16,則D(X)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.根據(jù)定積分的性質(zhì)和幾何意義,$\int_0^1$[$\sqrt{1-{{(x-1)}^2}}$-x]dx=$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)=log2x,若f(x)的導(dǎo)數(shù)f′(x0)=1,則x0=(  )
A.2eB.e2C.log2eD.loge2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a5>0,a1+a10<0,則當(dāng)Sn最大時(shí)正整數(shù)n為( 。
A.4B.5C.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}$,則f[f(${\frac{1}{4}}$)]的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求證:$\sqrt{a}$-$\sqrt{a-2}$<$\sqrt{a-1}$-$\sqrt{a-3}$(a≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊過(guò)點(diǎn)P(-1,3),則cos2α的值為-$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案