【題目】已知一列非零向量滿足:,.
(1)寫出數(shù)列的通項(xiàng)公式;
(2)求出向量與的夾角,并將中所有與平行的向量取出來,按原來的順序排成一列,組成新的數(shù)列,,為坐標(biāo)原點(diǎn),求點(diǎn)列的坐標(biāo);
(3)令(),求的極限點(diǎn)位置.
【答案】(1);(2);(3).
【解析】
(1)得出,運(yùn)用等比數(shù)列的定義判斷,即可求出通項(xiàng)公式.
(2)利用向量的數(shù)量積得出從而有:,即可求得與的夾角;
先利用數(shù)學(xué)歸納法易證成立從而得出:.結(jié)合等比數(shù)列的求得公式及數(shù)列的極限即可求得點(diǎn)列的坐標(biāo);
(3)將分組,利用等比數(shù)列前項(xiàng)和公式求出的坐標(biāo),再求極限即可求出的極限點(diǎn)坐標(biāo).
解:(1)
,
數(shù)列是以,的等比數(shù)列,
(2)
,
,,
與的夾角為
,
,
,
一般地,,
用數(shù)學(xué)歸納法易證成立.
設(shè)
;
,
所以點(diǎn)列的坐標(biāo)為
(3)由(2)知與的夾角為,
所以在中,與向量共線的向量為,,,……共個(gè),
與向量共線的向量為,,,……共個(gè),
與向量共線的向量為,,,……共個(gè),
與向量共線的向量為,,,……共個(gè),
的極限點(diǎn)位置為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意,函數(shù)滿足:,,數(shù)列的前15項(xiàng)和為,數(shù)列滿足,若數(shù)列的前項(xiàng)和的極限存在,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點(diǎn)且與直線垂直,直線與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)的直線與軌跡相交于兩點(diǎn),設(shè)點(diǎn),直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的左右焦點(diǎn)分別為,,過焦點(diǎn)的一條直線交橢圓于P,Q兩點(diǎn),若的周長為,且長軸長與短軸長之比為
(1)求出橢圓的方程;
(2)若,求出弦長的值;
(3)若,求出直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O坐標(biāo)原點(diǎn),從直線yx+1上的一點(diǎn)作x軸的垂線,垂足記為Q1,過Q1作OP1的平行線,交直線yx+1于點(diǎn),再從P2作x軸的垂線,垂足記為Q2,依次重復(fù)上述過程得到一系列點(diǎn):P1,Q1,P2,Q2,…,Pn,Qn,記Pk點(diǎn)的坐標(biāo)為,k=1,2,3,…,n,現(xiàn)已知x1=2.
(1)求Q2、Q3的坐標(biāo);
(2)試求xk(1≤k≤n)的通項(xiàng)公式;
(3)點(diǎn)Pn、Pn+1之間的距離記為|PnPn+1|(n∈N*),是否存在最小的正實(shí)數(shù)t,使得t對(duì)一切的自然數(shù)n恒成立?若存在,求t的值,若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.
(1)求曲線的方程;
(2)若直線 與曲線交于,兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線,若直線上存在點(diǎn),過點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com