【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(﹣1,0),B(1,1),C(2,0),點(diǎn)P是平面直角坐標(biāo)系xOy上一點(diǎn),且 =m (m,n∈R),
(1)若m=1,且 ∥ ,試求實(shí)數(shù)n的值;
(2)若點(diǎn)P在△ABC三邊圍成的區(qū)域(含邊界)上,求m+3n的最大值.
【答案】
(1)解:由題設(shè)知: , ,
∵m=1,
所以: ,
又∵ , ,
∴2+3n=﹣1,得n=﹣1,
所以,滿足題意的實(shí)數(shù)n=﹣1
(2)解:設(shè)P(x,y),
…
∴令: ,
∴ ,
∴m+3n=x﹣y,
令z=x﹣y,由圖知,
當(dāng)直線y=x﹣z過點(diǎn)C(2,0)時(shí),
z取得最大值2,
故m+3n的最大值為2
【解析】(1)直接利用向量的線性運(yùn)算求出對(duì)應(yīng)的值,(2)利用線性規(guī)劃問題求出對(duì)應(yīng)的結(jié)果.
【考點(diǎn)精析】利用平面向量的基本定理及其意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,滿足tanA= .
(1)若A ,求角A;
(2)若a ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是圓O上的三個(gè)點(diǎn),CO的延長線與線段BA的延長線交于圓外一點(diǎn).若 ,其中m,n∈R.則m+n的取值范圍是( )
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC,點(diǎn)M為棱A1B1的中點(diǎn).
求證:
(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)置的手機(jī)開機(jī)密碼若連續(xù)3次輸入錯(cuò)誤,則手機(jī)被鎖定,5分鐘后,方可重新輸入.某日,小明忘記了開機(jī)密碼,但可以確定正確的密碼是他常用的4個(gè)密碼之一,于是,他決定逐個(gè)(不重復(fù))進(jìn)行嘗試.
(1)求手機(jī)被鎖定的概率;
(2)設(shè)第X次輸入后能成功開機(jī),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:m∈R,使 是冪函數(shù),且在(0,+∞)上單調(diào)遞減;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是( )
A.p∧(q)
B.(p)∧q
C.p∧q
D.(p)∨q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊, ,且 .
(1)試判斷△ABC的形狀;
(2)若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F的距離的最小值為2.
(1)求a,b的值;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N
①當(dāng)過點(diǎn)A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;②若cos∠AMB= ,求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a2 , a5是方程x2﹣12x+27=0的兩根,數(shù)列{an}是公差為正的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Tn , 且Tn=1 bn . (n∈N*)
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)記cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com