1.一個盒子里有3個分別標(biāo)有號碼為1,2,3的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取
3次,則取得小球標(biāo)號最大值是3的取法有19種(結(jié)果用數(shù)字表示).

分析 由分步計數(shù)原理可得總的取法由27種,列舉可得不合題意得有8種,進而可得符合題意得方法種數(shù).

解答 解:由題意結(jié)合分部計數(shù)原理可得,總的取球方式共3×3×3=27種,
其中,(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),
(2,1,2),(2,2,1),(2,2,2)共8種不符合題意,
故取得小球標(biāo)號最大值是3的取法有27-8=19種,
故答案為:19.

點評 本題考查計數(shù)原理的應(yīng)用,采用間接的方式結(jié)合列舉法是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某三棱錐的三視圖如圖所示,則該三棱錐的外接球的體積是( 。
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{{5\sqrt{5}π}}{6}$D.$\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn,點(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{1}{2}$上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=5,其前9項和為63.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$+$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列三個命題:
①“若x2+2x-3≠0,則x≠-3”為假命題;
②若p∨q為真命題,則p,q均為真命題;
③命題p:?x∈R,3x>0,則¬p:?x0∈R,3${\;}^{{x}_{0}}$≤0.
其中正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C上任一點P到點F(1,0)的距離比它到直線l:x=-2的距離少1.
(1)求曲線C的方程;
(2)過點Q(1,2)作兩條傾斜角互補的直線與曲線C分別交于點A、B,試問:直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)p:l<x<2,q:2x>1,則P是q成立的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知m∈R,p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦點在y軸上的橢圓;q:在復(fù)平面內(nèi),復(fù)數(shù)z=1+(m-3)i對應(yīng)的點在第四象限.若p∧q為真,則m的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線過點(-3,4),則該雙曲線的離心率是( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊答案