【題目】已知函數(shù)為奇函數(shù),曲線在點處的切線與直線垂直,導函數(shù)的最小值為-12.
(1)求函數(shù)的解析式;
(2)用列表法求函數(shù)在上的單調(diào)增區(qū)間、極值、最值.
【答案】(1)(2)見解析
【解析】
(1)本題首先可以根據(jù)函數(shù)為奇函數(shù)得出的值,再根據(jù)導函數(shù)的最小值為得出的值,最后根據(jù)在點處的切線與直線垂直得出的值,即可得出結果;
(2)首先可以對函數(shù)進行求導,然后通過列表畫出函數(shù)在上的變化情況,然后根據(jù)表格以及利用導數(shù)求函數(shù)最值的方法即可得出結果。
(1)因為為奇函數(shù),定義域為R,
所以,即,
又因為的最小值為-12,所以且,
直線的斜率為,所以,
所以,;
(2)由(1)知,,
列表如下:
- | 0 | + | |||
10 | 遞減 | 極小值 | 遞增 | 18 |
在上的單調(diào)增區(qū)間是,
由,及表中數(shù)值,可知
極小值為,無極大值
,。
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題:①若方程的兩個根異號,則實數(shù);②函數(shù)是偶函數(shù),但不是奇函數(shù);③函數(shù) 在上是減函數(shù),則實數(shù)a的取值范圍是;④ 方程 的根滿足,則m滿足的范圍,其中不正確的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設二次函數(shù)滿足下列條件:當時,的最小值為0,且成立;當時,恒成立.
(1)求的解析式;
(2)若對,不等式恒成立、求實數(shù)的取值范圍;
(3)求最大的實數(shù),使得存在實數(shù),只要當時,就有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為落實國家“精準扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計劃今后十年內(nèi)在此基礎上,每年投入的資金比上一年增長.
(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關系式,并指出函數(shù)的定義域
(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F為線段EC上一動點.現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD內(nèi)過點D作DK⊥AB,K為垂足.設AK=t,則t的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中三年級的甲、乙兩個同學同時參加某大學的自主招生,在申請的材料中提交了某學科10次的考試成績,記錄如下:
甲:78 86 95 97 88 82 76 89 92 95
乙:73 83 69 82 93 86 79 75 84 99
(1)根據(jù)兩組數(shù)據(jù),作出兩人成績的莖葉圖,并通過莖葉圖比較兩人本學科成績平均值的大小關系及方差的大小關系(不要求計算具體值,直接寫出結論即可)
(2)現(xiàn)將兩人的名次分為三個等級:
成績分數(shù) | |||
等級 | 合格 | 良好 | 優(yōu)秀 |
根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績組合中隨機選取一組,求選中甲同學成績高于乙同學成績的組合的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某服裝商場,當某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進價(單位:元)與周次之間的關系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進價)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=x2-aln x-1,函數(shù)F(x)=.
(1)如果函數(shù)f (x)的圖象上的每一點處的切線斜率都是正數(shù),求實數(shù)a的取值范圍;
(2)當a=2時,你認為函數(shù)y=的圖象與y=F(x)的圖象有多少個公共點?請證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com