分析 求出圓心與半徑,即可寫出圓的方程.
解答 解:∵A(1,3),B(3,5),
∴|AB|=$\sqrt{{(3-1)}^{2}{+(5-3)}^{2}}$=2$\sqrt{2}$,
且AB的中點(diǎn)C為x=$\frac{1+3}{2}$=2,y=$\frac{3+5}{2}$=4,
即圓心C(2,4),半徑r=$\sqrt{2}$;
∴以A和B為直徑兩端點(diǎn)的圓的標(biāo)準(zhǔn)方程(x-2)2+(y-4)2=2.
故答案為:(x-2)2+(y-4)2=2.
點(diǎn)評(píng) 本題考查了求圓的方程的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若A,B,C三點(diǎn)共線,則$\overrightarrow{AB}$∥$\overrightarrow{BC}$ | B. | 若$\overrightarrow{AB}$∥$\overrightarrow{BC}$,則A,B,C三點(diǎn)共線 | ||
C. | 若AB∥CD,則$\overrightarrow{AB}$,$\overrightarrow{CD}$共線 | D. | 若$\vec a$∥$\vec b$,$\vec b$∥$\vec c$,則$\vec a$∥$\vec c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinα)>f(sinβ) | B. | f(cosα)>f(cosβ) | C. | f(sinα)>f(cosβ) | D. | f(sinα)<f(cosβ) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com