設(shè)f(x)=x3+bx2+cx+d,又k是一個常數(shù),已知當k<0或k>4時,f(x)-k=0只有一個實根;當0<k<4時,f(x)-k=0有三個相異實根,現(xiàn)給下列命題:
(1)f(x)-4=0與f'(x)=0有一個相同的實根;
(2)f(x)=0與f'(x)=0有一個相同的實根;
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.其中所有正確命題是
(1)(2)(4)
(1)(2)(4)
分析:由已知中f(x)=x3+bx2+cx+d,當k<0或k>4時,f(x)-k=0只有一個實根;當0<k<4時,f(x)-k=0有三個相異實根,故函數(shù)即為極大值,又有極小值,且極大值為4,極小值為0,分析出函數(shù)簡單的圖象和性質(zhì)后,逐一分析四個結(jié)論的正誤,即可得到答案.
解答:解:∵f(x)=x3+bx2+cx+d,
當k<0或k>4時,f(x)-k=0只有一個實根;
當0<k<4時,f(x)-k=0有三個相異實根,
故函數(shù)即為極大值,又有極小值,且極大值為4,極小值為0
故f(x)-4=0與f'(x)=0有一個相同的實根,即極大值點,故(1)正確;
f(x)=0與f'(x)=0有一個相同的實根,即極小值點,故(2)正確;
f(x)+3=0有一實根小于函數(shù)最小的零點,f(x)-1=0有三個實根均大于函數(shù)最小的零點,故(3)錯誤;
f(x)+3=0有一實根小于函數(shù)最小的零點,f(x)-2=0有三個實根均大于函數(shù)最小的零點,故(4)錯誤;
故答案為:(1)(2)(4)
點評:本題考查的知識點是根的存在性及根的個數(shù)判斷,其中根據(jù)已知條件,判斷出函數(shù)f(x)=x3+bx2+cx+d的圖象和性質(zhì)是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+x2+x(x∈R),又若a∈R,則下列各式一定成立的是(  )
A、f(a)≤f(2a)B、f(a2)≥f(a)C、f(a2-1)>f(a)D、f(a2+1)>f(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當a=c=0,b=
34
時,求M的值;
(Ⅱ)當a,b,c取遍所有實數(shù)時,求M的最小值.
(以下結(jié)論可供參考:對于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當且僅當a,b,c,d同號時取等號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個常數(shù),已知當k<0或k>4時,f(x)-k=0只有一個實根,當0<k<4時,f(x)-k=0有三個相異實根,則下列命題中錯誤的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+ax2+bx+1的導函數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R,則曲線y=f(x)在點(1,f(1))處的切線方程為
6x+2y-1=0
6x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3,則對于任意實數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的
 
條件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)

查看答案和解析>>

同步練習冊答案