如圖所示,AC1是正方體的一條體對角線,點P,Q分別為其在棱的中點,則PQ與AC1所成的角為(  ) 
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點:異面直線及其所成的角
專題:空間角
分析:以A1為原點,A1B1為x軸,A1D1為y軸,A1A為z軸,建立空間直角坐標系,利用向量法能求出PQ與AC1所成的角為
π
2
解答: 解:以A1為原點,A1B1為x軸,A1D1為y軸,A1A為z軸,
建立空間直角坐標系,
設正方體AC1棱長為2,
則P(1,0,0),Q(0,2,1),
A(0,0,2),C1(2,2,0),
PQ
=(-1,2,1),
AC1
=(2,2,-2),
設PQ與AC1所成的角為θ,
cosθ=|cos<
PQ
,
AC1
>|=
|
PQ
AC1
|
|
PQ
|•|
AC1
|

=
-2+4-2
6
12
=0,
∴PQ與AC1所成的角為
π
2

故選:D.
點評:本題考查異面直線所成角的大小的求法,是基礎題,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
b
,滿足
a
=(1,
3
),|
b
|=3,
a
⊥(
a
-2
b
),則|
a
-
b
|=( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(x+π)一個周期內(nèi)的簡圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算拋物線y=x2-3x+2上任一點P(μ,v)處的切線的斜率,并求出拋物線頂點處切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正三棱錐P-ABC中,D.E、F分別為PA.PC.AC的中點,M為PB上的任意一點,則DE與MF所成角的大小為( 。
A、30°B、60°
C、90°D、隨點M變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直三棱住ABC-A1B1C1,中CA=CB=CC1=2,∠ACB=90°.E、F分別是BC、A1A的中點.
(1)求證:EF∥平面A1C1B;
(2)求異面直線EF與A1C1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,AB=BD=2,三角形PAD為等邊三角形,將它沿AD折成大小為α(
π
2
<α<π
)的二面角P-AD-B,連接PC,PB.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)當α=120°時,求PC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要使函數(shù)y=ax+b有零點,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a,b,c滿足a2+b2+c2=1,則a2b2c2的最大值為
 
;a+b+c的最小值為
 
,3ab-3bc+2c2最大值為
 

查看答案和解析>>

同步練習冊答案