已知橢圓的兩個焦點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線)與橢圓交于兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時,求面積的最大值.

(1);(2).

解析試題分析:(1)求橢圓的標(biāo)準(zhǔn)方程,要找兩個等式以確定,本題中有焦點(diǎn)為,說明,又有離心率,即,由此再加上可得結(jié)論;(2)直線與圓錐曲線相交問題,又涉及到交點(diǎn)弦,因此我們都是把直線方程(或設(shè)出)與橢圓方程聯(lián)立方程組,然后消去(有時也可消去)得關(guān)于(或)的一元二次方程,再設(shè)交點(diǎn)為坐標(biāo)為,則可得,(用表示),同時這個方程中判別式(直線與橢圓相交),可得出的取值范圍.由此可由公式是直線的斜率得出弦長,中點(diǎn)橫坐標(biāo)為,進(jìn)而可寫出的中垂線方程,與相交的交點(diǎn)的坐標(biāo)可得,于是有,這是關(guān)于的一個函數(shù),利用函數(shù)的知識或不等式的性質(zhì)可求得最大值.
試題解析:(1)由已知橢圓的焦點(diǎn)在軸上,,,
,,     2分
橢圓的方程為     4分
(2),消去
直線與橢圓有兩個交點(diǎn),,可得(*)     6分
設(shè),
,,弦長,     8分
中點(diǎn), 設(shè),
  ,      11分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時,對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于、兩點(diǎn),過平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知,,分別是橢圓的四個頂點(diǎn),△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動點(diǎn)(點(diǎn)異于端點(diǎn)),直線分別交線段,橢圓于點(diǎn),直線交于點(diǎn)
(ⅰ)求的最大值;
(ⅱ)試問:兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,過點(diǎn)且離心率為.
求橢圓的方程;
已知是橢圓的左右頂點(diǎn),動點(diǎn)滿足,連接角橢圓于點(diǎn),在軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓經(jīng)過直線和直線的交點(diǎn),若存在,求出點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)軸上運(yùn)動,點(diǎn)軸上,點(diǎn)
為平面內(nèi)的動點(diǎn),且滿足,
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是直線上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,,切點(diǎn)分別為,,設(shè)切線的斜率分別為,,直線的斜率為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個交點(diǎn)記為,如此下去,一般地,過點(diǎn)作斜率為的直線與曲線相交,另一個交點(diǎn)記為,設(shè)點(diǎn)).
(1)指出,并求的關(guān)系式();
(2)求)的通項公式,并指出點(diǎn)列,,,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線:的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓為焦點(diǎn),離心率.設(shè)的一個交點(diǎn).

(1)求橢圓的方程.
(2)直線的右焦點(diǎn),交兩點(diǎn),且等于的周長,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案