【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開(kāi)始到出口,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開(kāi)始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點(diǎn)是其中的一個(gè)交叉路口點(diǎn).
(1)求甲經(jīng)過(guò)點(diǎn)的概率;
(2)設(shè)這名游客中恰有名游客都是經(jīng)過(guò)點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.
【答案】(1);(2)詳見(jiàn)解析.
【解析】
(1) 選擇從中間一條路走到的概率為.選擇從最右邊的道路走到點(diǎn)的概率為.因?yàn)檫x擇中間道路和最右邊道路行走的兩個(gè)事件彼此互斥,所以.(2) 隨機(jī)變量可能的取值,,,,,再求出它們對(duì)應(yīng)的概率,即得隨機(jī)變量的概率分布和數(shù)學(xué)期望.
解:(1)設(shè)“甲從進(jìn)口開(kāi)始到出口經(jīng)過(guò)點(diǎn)”為事件,
甲選中間的路的概率為,在前面從岔路到達(dá)點(diǎn)的概率為,這兩步事件相互獨(dú)立,
所以選擇從中間一條路走到的概率為.
同理,選擇從最右邊的道路走到點(diǎn)的概率為.
因?yàn)檫x擇中間道路和最右邊道路行走的兩個(gè)事件彼此互斥,
所以.
答:甲從進(jìn)口開(kāi)始到出口經(jīng)過(guò)點(diǎn)的概率.
(2)隨機(jī)變量可能的取值,,,,,
則,
,
,
,
,
概率分布為:
數(shù)學(xué)期望 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,再?gòu)倪@5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,已知,,,是邊上一點(diǎn),將沿折起,得到三棱錐。若該三棱錐的頂點(diǎn)在底面的射影在線段上,設(shè),則的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對(duì)于不相等的實(shí)數(shù)x1,x2,設(shè)m=,n=,現(xiàn)有如下命題:
①對(duì)于任意不相等的實(shí)數(shù)x1,x2,都有m>0;
②對(duì)于任意的a及任意不相等的實(shí)數(shù)x1,x2,都有n>0;
③對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=n;
④對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=-n.
其中真命題有___________________(寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知城市周邊有兩個(gè)小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,與夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過(guò)城市的公路,使鄉(xiāng)鎮(zhèn)和分別位于的兩側(cè),過(guò)和建設(shè)兩條垂直的公路和,分別與公路交匯于、兩點(diǎn),以為原點(diǎn),所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.
(1)當(dāng)兩個(gè)交匯點(diǎn)、重合,試確定此時(shí)路段長(zhǎng)度;
(2)當(dāng),計(jì)算此時(shí)兩個(gè)交匯點(diǎn)、到城市的距離之比;
(3)若要求兩個(gè)交匯點(diǎn)、的距離不超過(guò),求正切值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)在(2,)處的切線方程:
(2)當(dāng)a=2時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與雙曲線相交于、兩點(diǎn),為坐標(biāo)原點(diǎn),且.
(1)求與滿足的關(guān)系;
(2)求證:點(diǎn)到直線的距離是定值,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為的內(nèi)心,三邊長(zhǎng),點(diǎn)在邊上,且,若直線交直線于點(diǎn),則線段的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com