設(shè)a∈R,函數(shù)f(x)=ex+a•e-x的導(dǎo)函數(shù)是f′(x),且f′(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率是
3
2
,則切點(diǎn)的橫坐標(biāo)為( 。
A.ln2B.-ln2C.
ln2
2
D.-
ln2
2

對(duì)f(x)=ex+a•e-x求導(dǎo)得
f′(x)=ex-ae-x
又f′(x)是奇函數(shù),故
f′(0)=1-a=0
解得a=1,故有
f′(x)=ex-e-x,
設(shè)切點(diǎn)為(x0,y0),則
f′(x0)=ex0-e-x0=
3
2
,
ex0=2ex0=-
1
2
(舍去),
得x0=ln2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-3x2
(1)若x=2是函數(shù)y=f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=exf(x)在[0,2]上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、設(shè)a∈R,函數(shù)f(x)=2x3+(6-3a)x2-12ax+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-3x2,x=2是函數(shù)y=f(x)的極值點(diǎn).
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是f′(x),若f′(x)是偶函數(shù),則以下結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ex-ae-x的導(dǎo)函數(shù)為f′(x),且f′(x)是奇函數(shù),則a=(  )
A、0B、1C、2D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案