【題目】已知橢圓G: + =1(b>0)的上、下頂點和右焦點分別為M、N和F,且△MFN的面積為4 .
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點.以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.
【答案】
(1)
解:∵橢圓G: + =1(b>0),c2=3b2﹣b2=2b2,即c= b,
由△MFN的面積為4 ,則 ×2b×c=4 ,即bc=4 ,
則b=2,a2=3b2=12,
∴橢圓G的方程為:
(2)
解:設直線l的方程為y=x+m,由 ,整理得4x2+6mx+3m2﹣12=0.①
設A(x1,y1),B(x2,y2)(x1<x2),AB的中點為E(x0,y0),
則x0= =﹣ ,y0=x0+m= ,
因為AB是等腰△PAB的底邊,則PE⊥AB.
∴PE的斜率k= =﹣1,解得m=﹣2,
此時方程①為4x2+12x=0,解得x1=﹣3,x2=0,
∴y1=﹣1,y2=2.
∴|AB|= =33 .
此時,點P(﹣3,2)到直線AB:x﹣y+2=0的距離d= = ,
∴△PAB的面積S= |AB|d= ,
△PAB的面積
【解析】(1)由題意方程,求得c= b,根據(jù)三角形的面積公式,求得bc=4 ,即可求得a和b的值,即可求得橢圓方程;(2)設直線方程,代入橢圓方程,利用韋達定理及中點坐標公式,求得m的值,代入求得A和B的坐標,利用兩點之間坐標公式及三角形的面積公式,即可求得△PAB的面積.
科目:高中數(shù)學 來源: 題型:
【題目】某上市股票在30天內(nèi)每股交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上,該股票在30填內(nèi)的日交易量Q(萬股)與時間t(天)的部分數(shù)據(jù)如表所示:
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時間t(天)的一次函數(shù)關系式;
(3)用y表示該股票日交易額(萬元),寫出y關于t的函數(shù)關系式,并求在這30天中第幾天日交易額最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣ sin(2x+ )+2,求:
(1)f(x)的最小正周期及對稱軸方程;
(2)f(x)的單調遞增區(qū)間;
(3)若方程f(x)﹣m+1=0在x∈[0, ]上有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某城市有一條公路正西方AO通過市中心O后轉向北偏東α角方向的OB,位于該市的某大學M與市中心O的距離OM=3 km,且∠AOM=β,現(xiàn)要修筑一條鐵路L,L在OA上設一站A,在OB上設一站B,鐵路在AB部分為直線段,且經(jīng)過大學M,其中tanα=2,cosβ= ,AO=15km.
(1)求大學M在站A的距離AM;
(2)求鐵路AB段的長AB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1= ,且 =nan(n∈N+).
(1)寫出此數(shù)列的前4項;
(2)歸納猜想{an}的通項公式,并用數(shù)學歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), , ,
(1)求證:函數(shù)在點處的切線恒過定點,并求出定點的坐標;
(2)若在區(qū)間上恒成立,求的取值范圍;
(3)當時,求證:在區(qū)間上,滿足恒成立的函數(shù)有無窮多個.(記)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com