二次方程ax2-
2
bx+c=0,其中a、b、c是一鈍角三角形的三邊,且以b為最長(zhǎng).
①證明方程有兩個(gè)不等實(shí)根;
②證明兩個(gè)實(shí)根α,β都是正數(shù);
③若a=c,試求|α-β|的變化范圍.
分析:(1)證明方程有兩個(gè)不等實(shí)根,即只要驗(yàn)證△>0即可.(2)要證α,β為正數(shù),只要證明αβ>0,α+β>0即可.
(3)根據(jù)二次方程根與系數(shù)的關(guān)系,將|α-β|轉(zhuǎn)化為某變量的函數(shù),再求它的變化范圍.
解答:解:①在鈍角△ABC中,b邊最長(zhǎng).∴-1<cosB<0且b2=a2+c2-2accosB,△=(-
2
b)2-4ac=2b2-4ac

=2(a2+c2-2accosB)-4ac=2(a-c)2-4accosB>0.(其中2(a-c)2≥0且-4accosB>0
∴方程有兩個(gè)不相等的實(shí)根.
α+β=
2
b
a
>0,αβ=
c
a
>0
,∴兩實(shí)根α、β都是正數(shù).
③a=c時(shí),
α+β=
2
b
a
αβ=
c
a
=1
,∴(α-β)2=a2+β2-2αβ=(α+β)2-4αβ=
2b2
a2
-4

=
2(a2+c2-2accosB)-4a2
a2
=-4cosB
,∵-1<cosB<0,∴0<-4cosB<4,因此0<|α-β|<2
點(diǎn)評(píng):本題是以一元二次方程作為,考查解三角形的有關(guān)定理,余弦定理作為研究三角形邊角關(guān)系的一大工具,應(yīng)用廣泛.通過(guò)余弦定理溝通了三角函數(shù)與三角形有關(guān)性質(zhì),在研究較復(fù)雜的三角形問(wèn)題時(shí),常需正、余弦定理聯(lián)袂出場(chǎng)、密切協(xié)作,方能解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)二模)設(shè)A={(a,b)}|1<a<2,0<b<2,a,b∈R},任。╝,b)∈A,則關(guān)于x的一元二次方程ax2+4x+2b=0有實(shí)根的概率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案