數(shù)列{an}的前N項和為Sn,a1=1,an+1=2Sn(n∈N*).

(I)求數(shù)列{an}的通項an;

(II)求數(shù)列{nan}的前n項和T

答案:
解析:

  (I)∵an+1=2Sn,

  ∴Sn+1-Sn=2Sn,

  ∴=3.

  又∵S1a1=1,

  ∴數(shù)列{Sn}是首項為1、公比為3的等比數(shù)列,Sn=3n-1(n∈N*).

  ∴當n2時,an-2Sn-1=2·3n-2(n2),

  ∴an

  (II)Tna1+2a2+3a3+…+nan

  當n=1時,T1=1;

  當n2時,Tn=1+4·30+6·31+2n·3n-2 、

  3Tn=3+4·31+6·32+…+2n·3n-1, 、

 、伲诘茫海2Tn=-2+4+2(31+32+…+3n-2)-2n·3n-1

 。2+2·

  =-1+(1-2n)·3n-1

  ∴Tn+(n)3n-1(n2).

  又∵Tna1=1也滿足上式,

  ∴Tn+(n-)3n-1(n∈N*)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
,
1
3
,
2
3
,
1
4
,
2
4
3
4
,
1
5
,
2
5
,
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下運算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案