【題目】已知函數(shù).
(1)若是的一個極值點(diǎn),判斷的單調(diào)性;
(2)若有兩個極值點(diǎn),,且,證明:.
【答案】(1)在單調(diào)遞減,在單調(diào)遞增.(2)見解析
【解析】
(1)求出導(dǎo)函數(shù),由極值點(diǎn)求出參數(shù),確定的正負(fù)得的單調(diào)性;
(2)求出,得極值點(diǎn)滿足:
所以,由(1)即,不妨設(shè).要證,則只要證,而,因此由的單調(diào)性,只要能證,即即可.令,利用導(dǎo)數(shù)的知識可證得結(jié)論成立.
(1)由已知得.
因為是的一個極值點(diǎn),所以,即,
所以,
令,則,
令,得,令,得;
所以在單調(diào)遞減,在單調(diào)遞增,
又當(dāng)時,,,
所以當(dāng)時,,當(dāng)時,;
即在單調(diào)遞減,在單調(diào)遞增.
(2),因此極值點(diǎn)滿足:
所以由(1)即,不妨設(shè).
要證,則只要證,而,因此由的單調(diào)性,只要能證,即即可.
令,
則,
當(dāng)時,,,,所以,
即在單調(diào)遞增,又,
所以,
所以,即,
又,,在單調(diào)遞增,
所以,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究表明某地的山高 ()與該山的年平均氣溫 ()具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說法錯誤的是( )
A.年平均氣溫為時該山高估計為
B.該山高為處的年平均氣溫估計為
C.該地的山高與該山的年平均氣溫的正負(fù)相關(guān)性與回歸直線的斜率的估計值有關(guān)
D.該地的山高與該山的年平均氣溫成負(fù)相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形的面積,求的值;
(Ⅲ)設(shè)點(diǎn)為的中點(diǎn),射線(為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知定圓,定直線過的一條動直線與直線相交于,與圓相交于兩點(diǎn),是中點(diǎn).
(1)當(dāng)與垂直時,求證:過圓心;
(2)當(dāng)時,求直線的方程;
(3)設(shè),試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,多面體ABCDEF中,已知平面ABCD是邊長為3的正方形,,,EF到平面ABCD的距離為2,則該多面體的體積V為( )
A.B.5C.6D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com