(本小題滿分12分)已知二次函數(shù)的圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)的圖象與直線的兩個(gè)交點(diǎn)間的距離為8,
(1)求函數(shù)的表達(dá)式;
(2)證明:當(dāng)時(shí),關(guān)于的方程有三個(gè)實(shí)數(shù)解.
(1)由已知,設(shè),由,得,∴……2分
設(shè),它的圖象與直線的交點(diǎn)分別為
由,得
∴故……4分
(2)證明:由,得
即 ……5分
在同一坐標(biāo)系內(nèi)作出和的大致圖象如圖,其中的圖象是以坐標(biāo)軸為漸近線,且位于第一、三象限的雙曲線,的圖象是以為頂點(diǎn),開口向下的拋物線.
∴與的圖象在第三象限有一個(gè)交點(diǎn),
即有一個(gè)負(fù)數(shù)解.…… 8分
又∵
當(dāng)時(shí),
∴當(dāng)時(shí),在第一象限的圖象上存在一點(diǎn)在圖象的上方.
∴與的圖象在第一象限有兩個(gè)交點(diǎn),[來源:Z.xx.k.Com]
即有兩個(gè)正數(shù)解.
∴方程有三個(gè)實(shí)數(shù)解.…… 12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知二次函數(shù)的最小值為1,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)設(shè)有且僅有一個(gè)實(shí)數(shù)x0,使得f(x0)= x0,求函數(shù)f(x)的解析表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知定義在上的函數(shù)的圖象如右圖所示
(Ⅰ)寫出函數(shù)的周期;
(Ⅱ) 確定函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=ax2+(b-8)x-a-ab , 當(dāng)x(-∞,-3)(2,+∞)時(shí), <0,當(dāng)x(-3,2)時(shí)>0 .
(1)求在[0,1]內(nèi)的值域.
(2)若ax2+bx+c≤0的解集為R,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分) 已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/c/tnqss.gif" style="vertical-align:middle;" />,對于定義域內(nèi)的任意x,y都有,且,當(dāng)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com