在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,AB=BC=BE=2AD=2.
(Ⅰ)求異面直線DE與AC所成角的大小;
(Ⅱ)在線段CE上是否存在點F,使平面BDF⊥平面ADE,若存在,確定點F的位置,若不存在,請說明理由.
分析:先建立空間直角坐標(biāo)系,寫出有關(guān)的點及向量的坐標(biāo).(Ⅰ)先求出兩條異面直線的方向向量,進而利用向量的夾角即可求出異面直線所成的夾角;
(Ⅱ)利用
a
b
=0
?
a
b
,來證明線線垂直,從而證明線面、面面垂直.
解答:解:由于在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,
則AB,BC,BE兩兩垂直,
故可以B為原點建立如圖所示空間直角坐標(biāo)系B-xyz.

∵AB=BC=BE=2AD=2,
則B(0,0,0),A(0,2,0),C(2,0,0),D(1,2,0),E(0,0,2).
(Ⅰ)∵
DE
=(-1,-2,2)
,
AC
=(2,-2,0)

DE
AC
=(-1)×2+(-2)×(-2)=2
,
|
DE
|=
(-1)2+(-2)2+22
=3

|
AC
|=
22+(-2)2+02
=2
2

cos<
DE
,
AC
>=
DE
AC
|
DE
||
AC
|
=
2
6

故異面直線DE與AC所成角的大小為arccos
2
6

(Ⅱ)假設(shè)線段CE上存在這樣的點F,不妨設(shè)F(a,0,2-a)(0≤a≤2)
BD
=(1,2,0)
,
BF
=(a,0,2-a)


若設(shè)平面BDF的法向量為
n
=(x,y,z)

故有
n
BD
=0
n
BF
=0
,則
x+2y=0
ax+(2-a)z=0

∴平面BDF的一個法向量為
n
=(2,-1,-
2a
2-a
)

∵在平面ADE中,
DE
=(-1,-2,2)
AD
=(1,0,0)

同理可得平面ADE的一個法向量為
m
=(0,1,1)

由于平面BDF⊥平面ADE,則
m
n

m
n
=2×0+(-1)×1+(-
2a
2-a
)×1=0

解得a=-2,由于點F在線段CE上,-2∉{a|0≤a≤2}
故在線段CE上不存在點F,使得平面BDF⊥平面ADE.
點評:熟練掌握通過建立空間直角坐標(biāo)系利用平面的法向量和直線的方向向量等知識證明線線、線面、面面垂直和求出異面直線所成的夾角的方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
12
AB=a(如圖),將△ADC沿AC折起,使D到D′.記面ACD′為α,面ABC為β,面BCD′為γ.
精英家教網(wǎng)
(1)若二面角α-AC-β為直二面角(如圖),求二面角β-BC-γ的大;
精英家教網(wǎng)
(2)若二面角α-AC-β為60°(如圖),求三棱錐D′-ABC的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在△BCD內(nèi)運動(含邊界),設(shè)
AP
AB
AD
(α,β∈R)
,則α+β的取值范圍是
[1,
4
3
]
[1,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F(xiàn),G分別為線段PC,PD,BC的中點,現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,試給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
,橢圓以A、B為焦點且經(jīng)過點D.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(Ⅱ)以該橢圓的長軸為直徑作圓,判斷點C與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為
8
8
,點A到BD的距離AH=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊答案