分析 (1)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調區(qū)間即可;
(2)求出函數(shù)的導數(shù),通過討論a的范圍,求出f(x)的最小值,從而確定a的值即可.
解答 解。1)由題得f(x)的定義域為(0,+∞),且f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$,
當a≥0時,f′(x)>0,故f(x)在(0,+∞)上是單調遞增函數(shù).
當a<0時,由f′(x)=0得x=-a,由f′(x)>0得,x>-a,由f′(x)<0得,x<-a,
∴當a<0時,f(x)在(0,-a]上為減函數(shù),在(-a,+∞)上為增函數(shù).
(2)由(1)可知:f′(x)=$\frac{x+a}{{x}^{2}}$,
①若a≥-1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,
此時f(x)在[1,e]上為增函數(shù),
∴f(x)min=f(1)=-a=$\frac{3}{2}$,∴a=-$\frac{3}{2}$(舍去).
②若a≤-e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,
此時f(x)在[1,e]上為減函數(shù),
∴f(x)min=f(e)=1-$\frac{a}{e}$=$\frac{3}{2}$,∴a=-$\frac{e}{2}$(舍去).
③若-e<a<-1,令f′(x)=0,得x=-a,當1<x<-a時,f′(x)<0,
∴f(x)在(1,-a)上為減函數(shù);當-a<x<e時,f′(x)>0,
∴f(x)在(-a,e)上為增函數(shù),
∴f(x)min=f(-a)=ln(-a)+1=$\frac{3}{2}$⇒a=-$\sqrt{e}$.
綜上可知:a=-$\sqrt{e}$.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{6}$ | B. | $\frac{{\sqrt{15}}}{4}$ | C. | $\frac{{\sqrt{15}}}{2}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 外切 | B. | 相離 | C. | 相交 | D. | 內切 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com