分析:由題意,f(x)在(-∞,+∞)上為增函數(shù),f(0)=0,從而條件可變?yōu)?m-2mcosθ>2sin
2θ+2.根據(jù)題意,
0≤θ≤時(shí),0≤cosθ≤1,令t=cosθ∈[0,1],則問(wèn)題等價(jià)于t∈[0,1]時(shí),t
2-mt+(2m-2)>0恒成立,求m的取值范圍.令f(t)=t
2-mt+(2m-2),此函數(shù)對(duì)應(yīng)的拋物線開(kāi)口向上,對(duì)稱軸t=
,進(jìn)行分類討論:①當(dāng)此拋物線對(duì)稱軸t=
在區(qū)間[0,1]內(nèi)時(shí),m∈[0,2],函數(shù)最小值(2m-2)-
>0即可;②當(dāng)對(duì)稱軸在(-∞,0)時(shí),m<0,只要f(0)>0即可;③當(dāng)對(duì)稱軸在(1,+∞)時(shí),m>2,只要f(1)>0即可,由此可求出m的取值范圍
解答:解:由題意,函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集
∴f(x)在(-∞,+∞)上連續(xù)
∵函數(shù)f(x)為奇函數(shù),在[0,+∞)上是增函數(shù),
故f(x)在(-∞,+∞)上為增函數(shù)
由f(0)=-f(-0),得f(0)=0
f(4m-2mcosθ)-f(2sin
2θ+2)>f(0)=0
移向變形得f(4m-2mcosθ)>f(2sin
2θ+2)
∴由f(x)(-∞,+∞)上連續(xù)且為增函數(shù),得
4m-2mcosθ>2sin
2θ+2
∴2cos
2θ-4-2mcosθ+4m>0
cos
2θ-mcosθ+(2m-2)>0
根據(jù)題意,
0≤θ≤時(shí),0≤cosθ≤1
方法(1)
令t=cosθ∈[0,1]
則問(wèn)題等價(jià)于t∈[0,1]時(shí),t
2-mt+(2m-2)>0恒成立,求m的取值范圍
令f(t)=t
2-mt+(2m-2),此函數(shù)對(duì)應(yīng)的拋物線開(kāi)口向上,對(duì)稱軸t=
,
分類討論:
①當(dāng)此拋物線對(duì)稱軸t=
在區(qū)間[0,1]內(nèi)時(shí),m∈[0,2],
函數(shù)最小值(2m-2)-
>0即可,此時(shí)m
2-8m+8<0,
∴4-2
<m≤2
②當(dāng)對(duì)稱軸在(-∞,0)時(shí),m<0,
只要f(0)>0即可,此時(shí)2m-2>0,推出m>1,與m<0矛盾,此情況不成立,舍去
③當(dāng)對(duì)稱軸在(1,+∞)時(shí),m>2,
只要f(1)>0即可,此時(shí)1-m+2m-2=m-1>0,推出m>1,
∴m>2
綜上所述,m的取值范圍是(4-2
,+∞)
方法(2):參數(shù)分離法
由cos
2θ-mcosθ+(2m-2)>0,得cos
2θ-2+m(2-cosθ)>0,即m(2-cosθ)>2-cos
2θ
因?yàn)?≤cosθ≤1,所以
m>=
.
因?yàn)?span id="btbrjpv" class="MathJye">
=
=
(cosθ-2)2+4(cosθ-2)+2 |
cosθ-2 |
=
cosθ-2++4,
因?yàn)?≤cosθ≤1,所以cosθ-2<0,
所以原式=
-[(2-cosθ)+]+4≤-2+4=4-2,
當(dāng)且僅當(dāng)
2-cosθ=,即(2-cosθ)
2=2,2-cos
θ=,cos
θ=2-時(shí)取等號(hào).
所以
的最大值為
4-2,所以m
>4-2.
所以m的取值范圍是(4-2
,+∞).