【題目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,則cos(α+ )=(
A.
B.﹣
C.
D.﹣

【答案】C
【解析】解:∵0<α< ,﹣ <β<0, ∴ +α<
∴sin( +α)= = ,sin( )= =
∴cos(α+ )=cos[( +α)﹣( )]=cos( +α)cos( )+sin( +α)sin( )=
故選C
先利用同角三角函數(shù)的基本關(guān)系分別求得sin( +α)和sin( )的值,進而利用cos(α+ )=cos[( +α)﹣( )]通過余弦的兩角和公式求得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】A.如圖所示, 是園內(nèi)兩條弦的交點,過延長線上一點作圓的切線, 為切點,已知求證:

B.已知矩陣 , .求矩陣,使得

C.在平面直角坐標系中,直線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,已知直線與曲線相交于兩點,求線段的長.

D.已知都是正數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一圓經(jīng)過點A(2,﹣3)和B(﹣2,﹣5),且圓心C在直線l:x﹣2y﹣3=0上,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數(shù)x0 , 使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,按其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(Ⅰ)補全頻率分布直方圖;
(Ⅱ)估計本次考試的數(shù)學平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)用分層抽樣的方法在分數(shù)段為[110,130)的學生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2 +2n求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是各項均不相等的數(shù)列, 為它的前項和,滿足.

(1)若,且成等差數(shù)列,求的值;

(2)若的各項均不相等,問當且僅當為何值時, 成等差數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,這三天中恰有兩天下雨的概率近似為(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

同步練習冊答案