3.計算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

分析 直接利用三角函數(shù)的誘導(dǎo)公式化簡求值.

解答 解:sin(-$\frac{16π}{3}$)=-sin$\frac{16π}{3}$=-sin$\frac{4π}{3}$=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$;
cos(-$\frac{8π}{3}$)=cos$\frac{8π}{3}$=cos$\frac{2π}{3}$=-cos$\frac{π}{3}$=$-\frac{1}{2}$;
tan(-$\frac{17}{4}$π)=-tan$\frac{17π}{4}$=-tan$\frac{π}{4}$=-1.
故答案為:$\frac{\sqrt{3}}{2}$;$-\frac{1}{2}$;-1.

點評 本題考查三角函數(shù)的化簡求值,考查誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y+1≥0\\ x+y-3≤0\end{array}\right.$則$z=\frac{x}{2}+y$的最大值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)極坐標系的極點為直角坐標系的原點,極軸為x軸的正半軸.已知曲線C的極坐標方程為ρ=8sinθ
(1)求曲線C的直角坐標方程;
(2)設(shè)直線$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當x∈($\frac{π}{12}$,$\frac{π}{3}$)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{4}$+y2=1,直線m與橢圓交于A、B兩點,線段AB的中點為M(1,$\frac{1}{2}$),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)對任意實數(shù)x,y均有f(x)=f($\frac{x+y}{2}$)+f($\frac{x-y}{2}$).當x>0時,f(x)>0
(1)判斷函數(shù)f(x)在R上的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當x≥0時,g(x)=|x-m|-m(m>0),若對任意x∈R,不等式g(x-1)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在自然界中存在著大量的周期函數(shù),比如聲波.若兩個聲波隨時間的變化規(guī)律分別為:y1=3$\sqrt{2}$sin(100πt),y2=3cos(100πt+$\frac{π}{4}$),則這兩個聲波合成后(即y=y1+y2)的聲波的振幅為( 。
A.$6\sqrt{2}$B.$3+3\sqrt{2}$C.$3\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.學(xué)校計劃在周一至周四的藝術(shù)節(jié)上展演《雷雨》、《茶館》、《天籟》和《馬蹄聲碎》四部話劇,每天一部.受多種因素影響,話劇《雷雨》不能在周一和周四上演;《茶館》不能在周一和周三上演;《天籟》不能在周三和周四上演;《馬蹄聲碎》不能在周一和周四上演.那么下列說法正確的是( 。
A.《雷雨》只能在周二上演B.《茶館》可能在周二或周四上演
C.周三可能上演《雷雨》或《馬蹄聲碎》D.四部話劇都有可能在周二上演

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow$=(sinx,2cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,則實數(shù)m的最小值為( 。
A.0B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案