3.命題“?x∈R,x2-2≤0”的否定是?x∈R,x2-2>0.

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以,命題“?x∈R,x2-2≤0”的否定是:?x∈R,x2-2>0.
故答案為:?x∈R,x2-2>0.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則f(1)和f(-6)的大小關(guān)系為(  )
A.f(1)<f(-6)B.f(1)>f(-6)
C.f(1)=f(-6)D.f(1),f(-6)大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,圓O為△ABC的外接圓,過點C作圓O的切線交AB的延長線于點D,∠ADC的平分線交AC于點E,∠ACB的平分線交AD于點H.
(1)求證:CH⊥DE;
(2)若AE=2CE.證明:DC=2DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U為R,集合A={x|x2<4},B=$\left\{{x\left|{y=lo{g_{\frac{1}{2}}}$(x-2)},則下列關(guān)系正確的是(  )
A.A∪B=RB.A∪(∁B)=RC.(∁A)∪B=RD.A∩(∁B)=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sinxcos2x,下列結(jié)論正確的是(  )
A.y=f(x)的圖象關(guān)于$x=\frac{π}{2}$對稱B.y=f(x)的圖象關(guān)于$({\frac{π}{2},0})$對稱
C.y=f(x)的圖象關(guān)于y軸對稱D.y=f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,直角三角形ABC的頂點坐標(biāo)A(-2,0),直角頂點B(0,-2$\sqrt{2}$),頂點C在x軸上,點P為線段OA的中點,三角形ABC外接圓的圓心為M.
(1)求BC邊所在直線方程;
(2)求圓M的方程;
(3)直線l過點P且傾斜角為$\frac{π}{3}$,求該直線被圓M截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={x|x∈N,$\frac{12}{6-x}$∈N},則集合A用列舉法表示為{0,2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.請用多種方法證明不等式:(用一種方法得8分,兩種方法得14分,三種方法得16分.)
已知a,b∈(0,+∞),證明:$\frac{a}{{\sqrt}}$+$\frac{{\sqrt{a}}}$≥$\sqrt{a}$+$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}中,設(shè)Sn是它的前n項和,若log2(Sn+1)=n+1,則數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{3,n=1}\\{{2}^{n},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案