19.一個(gè)盒子中裝有2個(gè)紅球,4個(gè)白球,除顏色外,它們的形狀、大小、質(zhì)量等完全相同
(1)采用不放回抽樣,先后取兩次,每次隨機(jī)取一個(gè)球,求恰好取到1個(gè)紅球,1個(gè)白球的概率;
(2)采用放回抽樣,每次隨機(jī)取一球,連續(xù)取5次,求恰有兩次取到紅球的概率.

分析 (1)記“第i次取到紅球”為Ai(i=1,2),則先后取一球,恰好摸到一個(gè)紅球和一個(gè)白球可表示為${A_1}\overline{A_2}$+$\overline{A_1}{A_2}$,由此能求出恰好取到1個(gè)紅球,1個(gè)白球的概率.
(2)采用放回抽樣,每次取到紅球的概率$P=\frac{2}{6}=\frac{1}{3}$,連續(xù)取5次,可看作5次獨(dú)立重復(fù)試驗(yàn),由此能求出恰有兩次取到紅球的概率.

解答 解:(1)記“第i次取到紅球”為Ai(i=1,2),
則先后取一球,恰好摸到一個(gè)紅球和一個(gè)白球可表示為${A_1}\overline{A_2}$+$\overline{A_1}{A_2}$,
其概率為P(${A_1}\overline{A_2}$+$\overline{A_1}{A_2}$)=P(${A_1}\overline{A_2}$)+P($\overline{A_1}{A_2}$)=$\frac{2}{6}×\frac{4}{5}+\frac{4}{6}×\frac{2}{5}=\frac{8}{15}$,
∴恰好取到1個(gè)紅球,1個(gè)白球的概率為$\frac{8}{15}$…(6分)
(2)采用放回抽樣,每次取到紅球的概率$P=\frac{2}{6}=\frac{1}{3}$.
連續(xù)取5次,可看作5次獨(dú)立重復(fù)試驗(yàn),…(9分)
∴恰有兩次取到紅球的概率為${P_5}(2)=C_5^2×{(\frac{1}{3})^2}×{(\frac{2}{3})^3}=\frac{80}{243}$.…(12分)

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式、互斥事件概率加法公式、n次獨(dú)立重復(fù)試驗(yàn)概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=2x在[0,1]上的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校從參加高二年級(jí)數(shù)學(xué)競(jìng)賽考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù),滿(mǎn)分100分)分成六段,然后畫(huà)出如圖所示部分頻率分布直方圖.觀(guān)察圖形的信息,回答下列問(wèn)題:
(1)求第四小組的頻率以及頻率分布直方圖中第四小矩形的高;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識(shí)競(jìng)賽,求這兩個(gè)學(xué)生都來(lái)自C組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長(zhǎng)為半徑作扇形ACD和扇形BEF,D、E在A(yíng)B上,F(xiàn)在BC上.在△ACB中任取一點(diǎn),這一點(diǎn)恰好在圖中陰影部分的概率是( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.二手車(chē)經(jīng)銷(xiāo)商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車(chē)的使用年數(shù)x(0<x≤10)與銷(xiāo)售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價(jià)16139.574.5
(1)若這兩個(gè)變量呈線(xiàn)性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線(xiàn)方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收購(gòu)使用年限不超過(guò)10年的二手車(chē),且每輛該型號(hào)汽車(chē)的收購(gòu)價(jià)格為ω=0.03x2-1.81x+16.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷(xiāo)售一輛該型號(hào)汽車(chē)所獲得的利潤(rùn)L(x)最大?
(銷(xiāo)售一輛該型號(hào)汽車(chē)的利潤(rùn)=銷(xiāo)售價(jià)格-收購(gòu)價(jià)格)
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,在Rt△ACB中,∠ACB=90°,AB=2AC,分別以A、B為圓心,AC的長(zhǎng)為半徑作扇形ACD和扇形BDE,D在A(yíng)B上,E在BC上.在△ACB中任取一點(diǎn),這一點(diǎn)恰好在圖中陰影部分的概率是(  )
A.1-$\frac{{\sqrt{3}π}}{6}$B.$\frac{{\sqrt{3}π}}{6}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)棱長(zhǎng)為4的正方體涂上紅色后,將其切成棱長(zhǎng)為1的小正方體,置于一密閉容器攪拌均勻,從中任取一個(gè),則取到兩面涂紅色的小正方體的概率為( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{8}{27}$D.$\frac{12}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知一個(gè)水平放置的正方形用斜二測(cè)畫(huà)法作出的直觀(guān)圖是一個(gè)平行四邊形,若平行四邊形中有一條邊為4,則此正方形的面積是( 。
A..16或36B.36或64C.16或64D.36

查看答案和解析>>

同步練習(xí)冊(cè)答案