函數(shù)y=
1
2
sin3x的最大值是(  )
A、3
B、
3
2
C、1
D、
1
2
考點:三角函數(shù)的最值
專題:計算題,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:運用正弦函數(shù)的值域,當3x=2kπ+
π
2
(k∈Z)時,sin3x取得最大值1,即可得到所求最大值.
解答: 解:當3x=2kπ+
π
2
(k∈Z),即
x=
2kπ
3
+
π
6
(k∈Z)時,sin3x取得最大值1,
則有函數(shù)y=
1
2
sin3x的最大值為
1
2

故選:D.
點評:本題考查三角函數(shù)的最值,主要考查正弦函數(shù)的值域,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞增,若f(sin2θ)+f(2mcosθ+m)>0對任意θ∈[-
π
3
,
π
3
]恒成立,則實數(shù)m的范圍為( 。
A、-
3
8
<m<0
B、m>-
3
8
C、m>0
D、m>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=2cosα,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=|x-1+a|+|x-a|
(1)若a≥2,x∈R,證明:f(x)≥3;
(2)若f(1)<2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,則其漸近線的方程為( 。
A、y=±
3
3
x
B、y=±
2
2
x
C、y=±
3
x
D、y=±2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
3x+1
,數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N*).
(1)求證:數(shù)列{
1
an
}是等差數(shù)列;
(2)記Sn=a1a2+a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
x-y+1≥0
x+y-1≥0
3x-y-3≤0
,表示的平面區(qū)域內(nèi)為D,設(shè)直線l:kx-y+1=0與區(qū)域D重合的弦段長度為d,則d的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的右焦點為F作該雙曲線一條漸近線的垂線與兩條漸近線相交于M,N兩點,若O是坐標原點,△OMN的面積是
2
3
a2
,則該雙曲線的離心率是( 。
A、2
B、
5
C、
5
2
D、
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在160與5中間插入四個數(shù),使它們同這兩個數(shù)成等比數(shù)列,這四個數(shù)為
 

查看答案和解析>>

同步練習冊答案