14.求曲線$\frac{x^2}{9}+\frac{y^2}{4}=1$經(jīng)過伸縮變換$φ:\left\{{\begin{array}{l}{{x^'}=\frac{1}{3}x}\\{{y^'}=\frac{1}{2}y}\end{array}}\right.$變換后的曲線方程,并說明它表示什么圖形.

分析 利用變換公式化簡,代入求解即可.

解答 解:由$φ:\left\{{\begin{array}{l}{{x^'}=\frac{1}{3}x}\\{{y^'}=\frac{1}{2}y}\end{array}}\right.$得:$\left\{{\begin{array}{l}{x=3{x^'}}\\{y=2{y^'}}\end{array}}\right.$,代入$\frac{x^2}{9}+\frac{y^2}{4}=1$中得:$\frac{{{{(3{x^'})}^2}}}{9}+\frac{{{{(2{y^'})}^2}}}{4}=1$,
∴經(jīng)過伸縮變換后的曲線方程為:x′2+y′2=1.
它表示圓心在原點,半徑為1的圓.

點評 本題考查變換的運算法則,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點A(0,1),B(2,1),向量$\overrightarrow{AC}$=(-3,-2),則向量$\overrightarrow{BC}$=( 。
A.(5,2)B.(-5,-2)C.(-1,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2{-e}^{x},x≤1}\end{array}\right.$,若函數(shù)h(x)=f(x)-mx-2有且僅有兩個零點,則實數(shù)m的取值范圍( 。
A.(-6-4$\sqrt{2}$,0)∪(0,+∞)B.(-6+4$\sqrt{2}$,0)∪(0,+∞)C.(-6+4$\sqrt{2}$,0)D.(-6-4$\sqrt{2}$,-6+4$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為Sn,n∈N+,a3=5,S10=100.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=${2^{a_n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列敘述不正確的是(  )
A.概率是頻率的穩(wěn)定值,頻率是概率的近似值
B.已知事件M⊆N,則當M發(fā)生時,N一定發(fā)生
C.若A,B為互斥事件,則P(A)+P(B)<1
D.若一生產(chǎn)廠家稱,我們廠生產(chǎn)的產(chǎn)品合格率是0.98,則任取一件該產(chǎn)品,其是合格品的可能性大小為98%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,圖中的四邊形是邊長為2的正方形,其中正視圖、側(cè)視圖中的兩條虛線互相垂直,則該幾何體的體積是(  )
A.$\frac{20}{3}$B.6C.$\frac{16}{3}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若(m2-5m+4)+(m2-2m)i>0,則實數(shù)m的值為(  )
A.1B.0或2C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{1-x}(x≥1)}\\{{x}^{3}-3x+2(x<1)}\end{array}\right.$,且方程f(x)=a有兩個不同實根,則實數(shù)a范圍是(  )
A.(-∞,0)B.(0,1)C.(1,5)D.[1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在區(qū)間(2,3)內(nèi)為減函數(shù),在區(qū)間(5,+∞)為增函數(shù),則實數(shù)a的取值范圍是( 。
A.[3,4]B.[5,7]C.[4,6]D.[7,8]

查看答案和解析>>

同步練習冊答案