【題目】已知兩點(diǎn),,動(dòng)點(diǎn)與兩點(diǎn)連線的斜率滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)是曲線與軸正半軸的交點(diǎn),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由.
【答案】(Ⅰ)();(Ⅱ)3個(gè)
【解析】試題(Ⅰ)求動(dòng)點(diǎn)的軌跡方程的一般步驟:1.建系——建立適當(dāng)?shù)淖鴺?biāo)系.2.設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y).3.列式——列出動(dòng)點(diǎn)P所滿足的關(guān)系式.4.代換——依條件式的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為x,y的方程式,并化簡(jiǎn).5.證明——證明所求方程即為符合條件的動(dòng)點(diǎn)的軌跡方程.
(Ⅱ)由題意可知設(shè)所在直線的方程為,則所在直線的方程為分別聯(lián)立橢圓方程求得弦長(zhǎng),,再由得解方程即可
試題解析:(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為(),則,, 2分
依題意,所以,化簡(jiǎn)得, 4分
所以動(dòng)點(diǎn)的軌跡的方程為(). 5分
注:如果未說明(或注),扣1分.
(Ⅱ)設(shè)能構(gòu)成等腰直角,其中為,
由題意可知,直角邊,不可能垂直或平行于軸,故可設(shè)所在直線的方程為,
(不妨設(shè)),則所在直線的方程為7分
聯(lián)立方程,消去整理得,解得,
將代入可得,故點(diǎn)的坐標(biāo)為.
所以, 9分
同理可得,由,得,
所以,整理得,解得或11分
當(dāng)斜率時(shí),斜率;當(dāng)斜率時(shí),斜率;
當(dāng)斜率時(shí),斜率,
綜上所述,符合條件的三角形有個(gè). 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,是橢圓的左、右焦點(diǎn),過作直線交橢圓于兩點(diǎn),若的周長(zhǎng)為8.
(1)求橢圓方程;
(2)若直線的斜率不為0,且它的中垂線與軸交于點(diǎn),求點(diǎn)的縱坐標(biāo)的范圍;
(3)是否在軸上存在點(diǎn),使得軸平分?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(,為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意在上總存在兩個(gè)不同的,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 12 | 11 | 13 | 10 | 8 |
發(fā)芽率顆 | 26 | 25 | 30 | 23 | 16 |
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;
(2)請(qǐng)根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(2)中所得的線性回歸方程,預(yù)測(cè)溫差為時(shí),種子發(fā)芽的顆數(shù).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查機(jī)構(gòu)對(duì)全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com