如圖所示是一個(gè)正方體的展開圖,在原來的正方體中,有下列命題:
①AB與EF所在的直線平行;
②AB與CD所在的直線異面;
③MN與BF所在的直線成60°角;
④MN與CD所在的直線互相垂直.
其中正確的命題是
 
考點(diǎn):棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:由展開圖畫出正方體的直觀圖,進(jìn)而分析各直線之間的位置關(guān)系及夾角,進(jìn)而可得答案.
解答: 解:由展開圖可知,各點(diǎn)在正方體中的位置如下:

由圖可知,AB⊥EF且異面,①不正確;
AB與CD異面,②正確;
MN∥BF,③不正確;
MN⊥CD,④正確.
故正確的命題是:②④,
故答案為:②④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱柱的結(jié)構(gòu)特征,空間直線與直線的位置關(guān)系,其中由展開圖畫出正方體的直觀圖,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義某種運(yùn)算?,S=a?b的運(yùn)算原理如圖:則式子5?2+3?4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
(2)若等比數(shù)列的前n項(xiàng)和sn=2n+k,則必有k=-1;
(3)若x∈R+,則2x+2-x的最小值為2;
(4)雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
(5)平面內(nèi)到定點(diǎn)(3,-1)的距離等于到定直線x+2y-1=0的距離的點(diǎn)的軌跡是拋物線.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足任意的m,n∈N*有am-n=am+an+2mn成立,且a1=1,則a2014的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)角為30°,其終邊按逆時(shí)針方向轉(zhuǎn)三周得到的角的度數(shù)為
 
.若sin(-
π
2
-α)=-
1
3
,且tanα<0,那么cos(
2
+α)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對(duì)任意的x∈R有f(-x)+f(x)=x2,且在(0,+∞)上f′(x)>x.若f(2-a)-f(a)≥2-2a,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:“
1
n+1
+
1
n+2
+…+
1
3n+1
≥1( n∈N+)”時(shí),在驗(yàn)證初始值不等式成立時(shí),左邊的式子應(yīng)是“
 
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一大學(xué)生畢業(yè)找工作,在面試考核中,他共有三次答題機(jī)會(huì)(每次問題不同).假設(shè)他能正確回答每題的概率均為
2
3
,規(guī)定有兩次回答正確即通過面試,那么該生“通過面試”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=1+8i,z2=3+4i,其中i是虛數(shù)單位,則復(fù)數(shù)(z1-z2)i的虛部為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案