分析 (1)根據(jù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,判別式小于等于0求得a的范圍,
(2)根據(jù)(1)a的范圍確定函數(shù)g(a)的解析式,根據(jù)函數(shù)的單調(diào)性求得函數(shù)的值域.
解答 解(1)解:依題意可知△=16a2-4(2a+12)≤0,解得-$\frac{3}{2}$≤a≤2;
(2)當1≤a≤2時,g(a)=(a+1)(|a-1|+2)=(a+1)2,單調(diào)增,∴g(a)∈[4,9];
當-$\frac{3}{2}$≤a<1時,g(a)=(a+1)(|a-1|+2)=-(a-1)2+4,函數(shù)單調(diào)增,∴g(a)∈[-$\frac{9}{4}$,4);
綜合得函數(shù)g(a)的值域為[-$\frac{9}{4}$,9].
點評 本題主要考查了二次函數(shù)的值域問題.解題的關(guān)鍵是求得函數(shù)的解析式和在定義域上的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6個 | B. | 8個 | C. | 16個 | D. | 27個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “|am|<|bm|”是“|a|<|b|”的充分不必要條件 | |
B. | 命題“?x∈R,ax+b≤0”的否定是“?x0∈R,ax0+b>0” | |
C. | 若¬(p∧q)為真命題,則p,q均為假命題 | |
D. | 命題“若p,則¬q”為真命題,則“若q,則¬p”也為真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | (-∞,-4)∪(-4,1] | D. | (-∞,-4)∪(-4,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<$\frac{1}{2}$} | B. | {x|x<0或0<x<$\frac{1}{2}$} | C. | {x|x>$\frac{1}{2}$} | D. | {x|0<x<$\frac{1}{2}$} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com