【題目】已知拋物線:, 是上一動(dòng)點(diǎn), 是焦點(diǎn), .
(Ⅰ)求的取值范圍;
(Ⅱ)過點(diǎn)的直線與相交于兩點(diǎn),求使得面積最小時(shí)的直線的方程.
【答案】(1) (2).
【解析】試題分析:(1)根據(jù)兩點(diǎn)間距離公式表示,再根據(jù)拋物線將二元化為一元二次方程,最后根據(jù)二次函數(shù)性質(zhì)求取值范圍,(2)先設(shè)直線方程,與拋物線方程聯(lián)立,由韋達(dá)定理以及拋物線定義得,根據(jù)點(diǎn)到直線距離公式得高,代入三角形面積公式,根據(jù)斜率范圍求面積取值范圍,最后比較斜率不存在的情況得最小值.
試題解析:解:(Ⅰ)拋物線上一動(dòng)點(diǎn), 設(shè),則.
=
的取值范圍是.
(Ⅱ)
當(dāng)直線的斜率不存在時(shí),直線方程為: .
此時(shí),.
到直線的距離,;
當(dāng)直線的斜率存在時(shí),設(shè)為,則直線的方程為
設(shè)
由,消去得.
.
到直線的距離
綜上, 面積的取值范圍是.
當(dāng)面積最小時(shí),直線的方程為: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?
(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①已知-1<a<b<0,則0.3a>a2>ab;
②若正實(shí)數(shù)a、b滿足a+b=1,則ab有最大值;
③若正實(shí)數(shù)a、b滿足a+b=1,則有最大值;
④x,y∈(0,+∞),x3+y3>x2y+xy2.
其中真命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點(diǎn)坐標(biāo)是F1(﹣1,0)、F2(1,0),過點(diǎn)F2垂直于長軸的直線l交橢圓C于B、D兩點(diǎn),且|BD|=3.
(1)求橢圓C的方程;
(2)過定點(diǎn)P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點(diǎn)M,N,試判斷:在x軸上是否存在點(diǎn)A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實(shí)數(shù)m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求的值;
(2)求函數(shù)在的最小值;
(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),且橢圓經(jīng)過點(diǎn), ,拋物線過點(diǎn).
(Ⅰ)求、的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線滿足條件:
①過的焦點(diǎn);②與交不同兩點(diǎn)、且滿足.
若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點(diǎn),則實(shí)數(shù)b的取值范圍是( )
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項(xiàng)n和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強(qiáng)國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com