分析 (Ⅰ)要證CE2=CD•CB,結(jié)合題意,只需證明△CED∽△CBE即可,故連接BE,利用弦切角的知識即可得證;
(Ⅱ)在Rt三△OBC中,利用勾股定理即可得出CE的長,由(1)知,CE2=CD•CB,代入CE即可得出CD的長.
解答 (Ⅰ)如圖示:
證明:連接BE,
∵BC為⊙O的切線∴∠ABC=90°,
∵AB為⊙O的直徑∴∠AEB=90°,
∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°,
∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO,
∵∠AEO=∠CED∴∠CED=∠CBE,
∵∠C=∠C∴△CED∽△CBE,
∴$\frac{CE}{CB}$=$\frac{CD}{CE}$,∴CE2=CD•CB;
(Ⅱ)∵OB=1,BC=$\frac{12}{5}$,∴OC=$\frac{13}{5}$,
∴CE=OC-OE=$\frac{8}{5}$,
由(Ⅰ)得:CE2=CD•CB,
∴${(\frac{8}{5})}^{2}$=$\frac{12}{5}$•CD,
∴CD=$\frac{16}{15}$.
點(diǎn)評 本題主要考查了切線的性質(zhì)及其應(yīng)用,同時考查了相似三角形的判定和解直角三角形等知識點(diǎn),運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -3 | C. | 0 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | (0,$\frac{1}{2}$) | C. | (-∞,$\frac{1}{2}$] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com