精英家教網 > 高中數學 > 題目詳情
已知a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根,函數的定義域為[a,b].
(1)當k=0時,求函數f(x)的值域;
(2)證明:函數f(x)在其定義域[a,b]上是增函數;
(3)在(1)的條件下,設函數,若對任意的,總存在,使得f(x2)=g(x1)成立,求實數m的取值范圍.
【答案】分析:(1)確定函數解析式,求導函數,確定函數的單調性,從而可求函數f(x)的值域;
(2)確定函數在其定義域[a,b]上,導數為正,即可得到結論;
(3)由題意知:g(x)的值域是f(x)值域的子集,分別確定g(x)的值域、f(x)值域,即可求得實數m的取值范圍.
解答:(1)解:當k=0時,4x2-1=0,∴x=±,∴,
,
∴f(x)在[]上單調遞增
∴函數f(x)的值域為[-];
(2)證明:求導函數可得
∵a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根
∴拋物線開口向下,兩根之內的函數值必為正值
∵當x∈[a,b],,∴-x2+kx+1>0,
>0.
∴函數f(x)在其定義域[a,b]上是增函數;
(3)解:由題意知:g(x)的值域是f(x)值域的子集.
由(1)知,f(x)的值域是,g'(x)=3x2-3m2,g'(x)=0⇒x=±m
x-m(-m,m)m
f'(x)+-+
f(x)遞增極大值g(-m)遞減極小值g(m)遞增
顯然,
∴欲使g(x)的值域是f(x)值域的子集,只需,解得:
點評:本題考查導數知識的運用,考查函數的單調性與值域,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數據a,4,2,5,3的平均數為b,其中a,b是方程x2-4x+3=0的兩個根,則這組數據的標準差是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知10a,10b是方程x2-4x+1=0的兩個根,則a+b=
0
0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知lga、lgb是方程2x2-4x+1=0的兩個根,則的值是(    )

A.4                     B.3                    C.2                     D.1

查看答案和解析>>

科目:高中數學 來源:2012年人教A版高中數學必修1對數函數練習卷(解析版) 題型:選擇題

已知lga,lgb是方程2x-4x+1 = 0的兩個根,則(lg)的值是(  ).

(A).4               (B).3                 (C).2                     (D).1

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省常州一中高三(下)期初數學試卷(解析版) 題型:解答題

已知數據a,4,2,5,3的平均數為b,其中a,b是方程x2-4x+3=0的兩個根,則這組數據的標準差是   

查看答案和解析>>

同步練習冊答案