一個多面體的直觀圖和三視圖(正視圖、左視圖、俯視圖)如圖所示,M、N分別為A1B、B1C1的中點.求證:

(1)MN∥平面ACC1A1;
(2)MN⊥平面A1BC.
證明略
  由題意可知,這個幾何體是直三棱柱,

且AC⊥BC,AC=BC=CC1.
(1)連接AC1,AB1.
由直三棱柱的性質得AA1⊥平面A1B1C1
所以AA1⊥A1B1,則四邊形ABB1A1為矩形.
由矩形性質得AB1過A1B的中點M.
在△AB1C1中,由中位線性質得MN∥AC1,
又AC1平面ACC1A1,
MN平面ACC1A1,
所以MN∥平面ACC1A1.
(2)因為BC⊥平面ACC1A1,AC1平面ACC1A1,
所以BC⊥AC1.
在正方形ACC1A1中,A1C⊥AC1.
又因為BC∩A1C=C,
所以AC1⊥平面A1BC.
由MN∥AC1,得MN⊥平面A1BC.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,正方形所在的平面與平面垂直,的交點,,且

 

 
  (1)求證:平面;

  (2)求直線與平面所成的角的大;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,點EPD上,且PEED=2∶1.
問:在棱PC上是否存在一點F,使BF∥面AEC?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一扇形鐵皮AOB,半徑OA="72" cm,圓心角∠AOB=60°.現(xiàn)剪下一個扇環(huán)ABCD作圓臺形容器的側面,并從剩下的扇形OCD內(nèi)剪下一個最大的圓剛好作容器的下底(圓臺的下底面大于上底面),則OC的長為______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知空間四邊形ABCD的各邊和對角線的長都等于a,點M、N分別是AB、CD的中點.

(1)求證:MN⊥AB,MN⊥CD;
(2)求MN的長;
(3)求異面直線AN與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方體ABCD—A1B1C1D1中,E、F分別是AB和AA1的中點.
求證:(1)E,C,D1,F(xiàn)四點共面;
(2)CE,D1F,DA三線共點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在底面邊長為2 的正三棱錐V-ABC中,E是BC的中點,若的面積是,則側棱VA與底面所成角的大小是__________________(結果用反三角函數(shù)值表示)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m是平面的一條斜線,點A是平面外的任意點,是經(jīng)過點A的一條動直線,那么下列情形中可能出現(xiàn)的是                                                       (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,設平面,,垂足分別為、。若增加一個條件,就能推出,F(xiàn)有:

① ;
② 、所成的角相等;
③ 內(nèi)的射影在同一條直線上;
④ 。
那么上述幾個條件中能成為增加條件的是________。

查看答案和解析>>

同步練習冊答案