精英家教網 > 高中數學 > 題目詳情
18.設等差數列{an}的前n項和公式是Sn=5n2+3n,求
(1)a1,a2,a3;           
(2){an}的通項公式.

分析 (1)直接由數列的前n項和求得數列前3項;
(2)由an=Sn-Sn-1求得n≥2時的通項公式,驗證首項后得答案.

解答 解:解:(1)由Sn=5n2+3n,得a1=S1=8,${a}_{2}={S}_{2}-{a}_{1}=5×{2}^{2}+3×2-8=18$,
${a}_{3}={S}_{3}-{S}_{2}=5×{3}^{2}+3×3-(5×{2}^{2}+3×2)$=54-26=28;
(2)當n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}=5{n}^{2}+3n-[5(n-1)^{2}+3(n-1)]$=10n-2.
驗證a1=8適合上式,
∴an=10n-2.

點評 本題考查數列遞推式,訓練了由數列的前n項和求數列的通項公式,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.直線$\left\{\begin{array}{l}x=3+tsin25°\\ y=-tcos25°\end{array}\right.$(t是參數)的傾斜角是( 。
A.25°B.115°C.65°D.155°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知向量$\overrightarrow a$=(3,k),$\overrightarrow b$=(2,-1),$\overrightarrow a$⊥$\overrightarrow b$,則實數k的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.下列命題中正確的是((  )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分必要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:?x0∈R,使得x02+x0-1<0,則¬p:?x∈R,使得x2+x-1≥0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.9人排成3×3方陣(3行,3 列),從中選出3人分別擔任隊長、副隊長、紀律監(jiān)督員,要求這3人至少有兩人位于同行或同列,則不同的任取方法數為468.(用數字回答)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.知a1=1,a2=$\frac{1}{3}$,a3=$\frac{1}{6}$,a4=$\frac{1}{10}$,則數列{an}的一個通項公式an=( 。
A.$\frac{2}{(n+1)^{2}}$B.$\frac{2}{n(n+1)}$C.$\frac{2}{{2}^{n}-1}$D.$\frac{2}{2n-1}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若A是半徑為2 圓上一定點,在圓上其它位置任取一點B,連接AB,得到一條弦,則此弦的長度小于或等于半徑長度的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.運行如圖的算法程序輸出的結果應是(  ) 
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知數列{an}的前n項和為Sn=3n,數列{bn}滿足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求數列{an}的通項公式an
(2)求數列{bn}的通項公式bn;
(3)求數列{bn}的前n項和Tn
參考公式:12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).

查看答案和解析>>

同步練習冊答案