(2013•閘北區(qū)二模)在平面直角坐標(biāo)系xOy中,已知曲線C1為到定點(diǎn)F(
3
2
,
1
2
)
的距離與到定直線l1
3
x+y+2=0
的距離相等的動(dòng)點(diǎn)P的軌跡,曲線C2是由曲線C1繞坐標(biāo)原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)30°形成的.
(1)求曲線C1與坐標(biāo)軸的交點(diǎn)坐標(biāo),以及曲線C2的方程;
(2)過(guò)定點(diǎn)M0(m,0)(m>2)的直線l2交曲線C2于A、B兩點(diǎn),已知曲線C2上存在不同的兩點(diǎn)C、D關(guān)于直線l2對(duì)稱.問(wèn):弦長(zhǎng)|CD|是否存在最大值?若存在,求其最大值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)利用兩點(diǎn)間的距離公式和拋物線的定義可知曲線C1為拋物線,由拋物線C1的對(duì)稱軸、焦點(diǎn)、準(zhǔn)線可知:C2是以(1,0)為焦點(diǎn),以x=-1為準(zhǔn)線的拋物線,得出即可;
(2)由于曲線C2上存在不同的兩點(diǎn)C、D關(guān)于直線l2對(duì)稱,設(shè)出直線l2的斜率可得直線CD的方程,與拋物線方程聯(lián)立,聯(lián)立根與系數(shù)的關(guān)系即可得出弦長(zhǎng)|CD|,通過(guò)換元利用二次函數(shù)的單調(diào)性即可得出.
解答:解:(1)設(shè)P(x,y),由題意,可知曲線C1為拋物線,并且有
(x-
3
2
)
2
+(y-
1
2
)
2
=
1
2
|
3
x+y+2|

化簡(jiǎn),得拋物線C1的方程為:x2+3y2-2
3
xy-8
3
x-8y=0

令x=0,得y=0或y=
8
3
,
令y=0,得x=0或x=8
3
,
∴曲線C1與坐標(biāo)軸的交點(diǎn)坐標(biāo)為(0,0)和(0,
8
3
)
(8
3
,0)

由題意可知,曲線C1為拋物線,過(guò)焦點(diǎn)與準(zhǔn)線垂直的直線為y-
1
2
=
1
3
(x-
3
2
)
,化為y=
3
3
x

可知此對(duì)稱軸過(guò)原點(diǎn),傾斜角為30°.
又焦點(diǎn)F(
3
2
1
2
)
l1:y=-
3
x-2
的距離為|
3
×
3
2
+
1
2
+2
(
3
)
2
+12
|=2

∴C2是以(1,0)為焦點(diǎn),以x=-1為準(zhǔn)線的拋物線,其方程為:y2=4x.
(2)設(shè)C(x1,y1),D(x2,y2),
由題意知直線l2的斜率k存在且不為零,設(shè)直線l2的方程為y=k(x-m),則直線CD的方程為y=-
1
k
x+b

y=-
1
k
x+b
y2=4x.
得y2+4ky-4kb=0,
∴△=16k(k+b)>0①
∴y1+y2=-4k,y1•y2=-4kb,
設(shè)弦CD的中點(diǎn)為G(x3,y3),則y3=-2k,x3=k(b+2k).
∵G(x3,y3)在直線l2上,-2k=k(bk+2k2-m),即b=
m-2-2k2
k

將②代入①,得0<k2<m-2,
|CD|=
1+(-k)2
•|y1-y2|
=
1+k2
(y1+y2)2-4y1y2
=4
-(k2-
m-3
2
)
2
+(
m-1
2
)
2

設(shè)t=k2,則0<t<m-2.
構(gòu)造函數(shù)f(t)=4
-(t-
m-3
2
)
2
+(
m-1
2
)
2
,0<t<m-2.
由已知m>2,當(dāng)
m-2>0
m-3<0
,即2<m≤3時(shí),f(t)無(wú)最大值,所以弦長(zhǎng)|CD|不存在最大值.
當(dāng)m>3時(shí),f(t)有最大值2(m-1),即弦長(zhǎng)|CD|有最大值2(m-1).
點(diǎn)評(píng):熟練掌握拋物線的定義及其性質(zhì)、直線與拋物線相交問(wèn)題轉(zhuǎn)化為一元二次方程的根與系數(shù)的關(guān)系、弦長(zhǎng)公式、換元法、二次函數(shù)的單調(diào)性、分類討論的思想方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)設(shè)為虛數(shù)單位,集合A={1,-1,i,-i},集合B={i10,1-i4,(1+i)(1-i),
1+i1-i
}
,則A∩B=
{-1,i}
{-1,i}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)在平面直角坐標(biāo)系xOy中,以向量
a
=(a1,a2),
b
=(b1,b2)為鄰邊的平行四邊形的面積為
|a1b2-b1a2|
|a1b2-b1a2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)(1+2x)3(1-x)4展開式中x6的系數(shù)為
-20
-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)過(guò)原點(diǎn)且與向量
n
=(cos(-
π
6
),sin(-
π
6
))
垂直的直線被圓x2+y2-4y=0所截得的弦長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)設(shè)0<θ<
π
2
,a1=2cosθ,an+1=
2+an
,則數(shù)列{an}的通項(xiàng)公式an=
2cos
θ
2n-1
2cos
θ
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案